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Preface 

The Air Force Distributed Common Ground System (AF DCGS) is responsible for producing 
and distributing actionable intelligence from data collected by a wide variety of U.S. Air Force 
platforms for warfighters around the world. Over the past two decades, intelligence collections 
and the demand for intelligence products have grown exponentially, straining analytic capacity. 
At the same time, intelligence analysts often are too busy performing routine processing, 
exploitation, and dissemination (PED) tasks to focus on larger strategic analyses that may be 
required to meet future threats envisioned by the 2018 National Defense Strategy. A 2012 
RAND Project AIR FORCE (PAF) report suggested that artificial intelligence (AI) would one 
day be able to help free analysts to do tasks that make better use of human intelligence. Since 
that report was published, AI and machine learning (ML) have made enormous advances, and we 
foresee further innovation in the coming years.  

In 2017, Air Force/A2 asked PAF to analyze how current and potential future technologies 
could help AF DCGS become more effective, efficient, adept at using human capital, and agile. 
We were also asked to consider the process, training, and organizational improvements needed to 
make best use of these technologies. The research project, called Closing the PED Gap, was 
conducted in fiscal year 2018 in PAF’s Force Modernization and Employment Program. The 
research is discussed in three companion reports: 

• Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 1, 
Findings and Recommendations, RR-A341-1, 2021. Volume 1 provides essential findings 
and recommendations for a broad audience, including Air Force decisionmakers. 

• Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 2,	
Technical Analysis and Supporting Material, RR-A341-2, 2021 (this report). Volume 2 
provides more in-depth discussion of project methodology; a primer on AI and ML; 
more-detailed discussion of key recommendations; and other information that will be of 
interest to specialists, stakeholders, and experts. 

• Technology Innovation and the Future of Air Force Intelligence Analysis: Volume 3, 
Technical Assessment of Data Flow Maps, forthcoming, Not available to the general 
public. Volume 3 furnishes additional restricted detail. 

This report should be of interest to policymakers within the Air Force and the wider 
intelligence community. 

The research reported here was commissioned by U.S. Air Force/A2 and conducted within 
the Force Modernization and Employment Program of RAND Project AIR FORCE as part of a 
fiscal year 2018 project Closing the PED Gap. 
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RAND Project AIR FORCE 
RAND Project AIR FORCE (PAF), a division of the RAND Corporation, is the Department 

of the Air Force’s (DAF’s) federally funded research and development center for studies and 
analyses, supporting both the United States Air Force and the United States Space Force. PAF 
provides the DAF with independent analyses of policy alternatives affecting the development, 
employment, combat readiness, and support of current and future air, space, and cyber forces. 
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Employment; Manpower, Personnel, and Training; and Resource Management. The research 
reported here was prepared under contract FA7014-16-D-1000. 

Additional information about PAF is available on our website: 
www.rand.org/paf/ 
This report documents work originally shared with the DAF on October 3, 2018. The draft 

report, issued on September 26, 2018, was reviewed by formal peer reviewers and U.S. Air Force 
subject-matter experts. 
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Summary 

Issue 
There is growing demand for the Air Force Distributed Common Ground System  

(AF DCGS) to analyze sensor data. Getting the right intelligence to the right people at the right 
time is increasingly difficult as the amount of data grows and timelines shrink. The need to 
exploit all collections limits the ability of analysts to address higher-level intelligence problems. 
Current tools and databases do not facilitate access to needed information. 

Approach 
Air Force/A2 asked RAND Project AIR FORCE (PAF) to analyze how new tools and 

technologies can help meet these demands, including how artificial intelligence (AI) and 
machine learning (ML) can be integrated into the analysis process. PAF assessed AF DCGS 
tools and processes, surveyed the state of the art in AI/ML methods, and examined best practices 
to encourage innovation and to incorporate new tools.  

Conclusions 

• Many analytic tasks can be fully or partially automated, although human involvement 
will continue to be necessary in more-complex tasks. 

• AI/ML can free analysts to focus on solving intelligence problems and developing 
supporting technologies to make analysis more efficient. 

• Analysts will require new skills both to facilitate use of AI/ML and to take advantage of 
opportunities to conduct more-advanced analysis. 

Recommendations 
AF DCGS should 
• leverage existing technologies to automate some analysis and reporting tasks and to 

make archival intelligence more accessible 
• take advantage of AI/ML technologies, when available, for early-phase analysis tasks 

(e.g., identifying and tagging imagery, issuing threat warnings, re-tasking collectors) 
• organize to balance human effort across three competencies: supporting missions, 

supporting analysis, and solving intelligence problems 
• recruit and train analysts with data science, programming, and other skills 
• follow best practices for developing, implementing, and sustaining new tools. 



 ix 

Figure S.1. Major Recommendations 

NOTE: We recommend short-term improvements that can be implemented today and farther-term improvements 
that require technical breakthroughs or significant adjustments to AF DCGS network architecture and non-materiel 
improvements to make the AF DCGS more scalable while maintaining core capabilities. More detail on 
implementation is provided in Menthe et al., 2021; Menthe et al., forthcoming. The latter includes more-extensive 
discussion of SIGINT. AFB = Air Force Base; ISR = intelligence, surveillance, and reconnaissance; PED = 
processing, exploitation, and dissemination. 
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1. Introduction 

The U.S. Air Force/A2 asked RAND Project AIR FORCE (PAF) to investigate how 
technologies, tools, and processes can help the Air Force Distributed Common Ground System 
(AF DCGS) manage the growing demand for intelligence to support warfighters; make processes 
more effective, efficient, and agile; and make better use of human capital to meet evolving 
threats, such as those outlined in the 2018 National Defense Strategy. There are three volumes to 
this report; this is the second. Volume 1 presents findings and recommendations from this 
research.1 

This chapter provides additional detail about the research project. We first discuss how the 
project builds on previous PAF analyses of this problem. We then discuss the scope, define key 
terms, and describe the research methodology. Finally, we detail how we constructed the data 
flow maps referred to in subsequent chapters. 

Previous RAND Project AIR FORCE Work 
This research builds on several previous PAF projects stretching back almost a decade. PAF 

first examined AF DCGS operations in fiscal year (FY) 2009–2010 work on the intelligence, 
surveillance, and reconnaissance (ISR) force mix, in which processing, exploitation, and 
dissemination (PED) was identified as the bottleneck for counterinsurgency (COIN) and 
counterterrorism (CT) operations. In that work, PAF focused on full-motion video (FMV) 
operations and motion imagery processing and exploitation tools.2 This was the first work in 
which PAF examined new tools and recommended organizing near real-time intelligence around 
geographic areas. In FY 2012, PAF looked at AF DCGS PED automation on a task-by-task basis 
and made recommendations for low-hanging fruit.3 In FY 2014, PAF examined how Air Force 
PED works within and makes use of the national signals intelligence (SIGINT) enterprise. PAF 
also looked at the special challenges of technical electronic intelligence (TechELINT). In FY 

 
1 Lance Menthe, Dahlia Anne Goldfeld, Abbie Tingstad, Sherrill Lingel, Edward Geist, Donald Brunk, Amanda 
Wicker, Sarah Soliman, Balys Gintautas, Anne Stickells, Amado Cordova, Technology Innovation and the Future of 
Air Force Intelligence Analysis: Volume 1, Findings and Recommendations, Santa Monica, Calif.: RAND 
Corporation, RR-A341-1, 2021. 
2 Lance Menthe, Amado Cordova, Carl Rhodes, Rachel Costello, and Jeffrey Sullivan, The Future of Air Force 
Motion Imagery Exploitation: Lessons from the Commercial World, Santa Monica, Calif.: RAND Corporation, TR-
1133-AF, 2012; and Amado Cordova, Lindsay D. Millard, Lance Menthe, Robert A. Guffey, and Carl Rhodes, 
Motion Imagery Processing and Exploitation (MIPE), Santa Monica, Calif.: RAND Corporation, RR-154-AF, 2013. 
3 Lance Menthe, Amado Cordova, Elliot Axelband, Lindsay D. Millard, Abbie Tingstad, Endy M. Daehner, Kirsten 
M. Keller, and John Langley, Technologies and Processes for Automating Processing, Exploitation, and 
Dissemination, Santa Monica, Calif.: RAND Corporation, 2015b, Not available to the general public. 
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2015, PAF looked at AF DCGS as part of the larger intelligence community (IC), defined the 
spectrum of activities for synthesizing intelligence, and made broad recommendations for 
automation.4 In FY 2017, PAF looked at the process for assessing AF DCGS intelligence and 
made recommendations to improve data structures, many of which are echoed in the most recent 
research.5  

As intelligence needs and expectations change, analytic requirements will change along with 
them. However, some common through lines continue to emerge. For example, in the final report 
for the FY 2012 project on automating Air Force PED, PAF researchers said: 

When it comes to PED, the Air Force’s most valuable asset is, and will remain, 
its force of trained human analysts. Instead of trying to replicate by machine what 
its analysts already do well, the Air Force should invest in technologies that help 
analysts do more. In the near term, the emphasis should be on automating 
specific tasks to meet immediate needs. In the middle term, the Air Force should 
acquire new PED capabilities. In the long term, the AF DCGS should transition 
to an alternative workflow and organizational construct better suited to take 
advantage of these capabilities.6  

This insight is the basis for recommendations made throughout PAF’s FY 2018 research on 
artificial intelligence (AI)/machine learning (ML), as detailed in Volume 1 of this series and this 
report. However, two factors have changed since the former and present research was conducted. 
First, technologies that can fully automate parts of the analytic process—specifically, the AI/ML 
methods described in Chapter 4 of this report—are at last starting to mature. Many of the 
capabilities that PAF previously recommended for acquisition only in the “middle term” can 
(and should) be sought now. Second, the demand for AF DCGS support has broadened and is 
expected to continue to expand beyond the laser-like focus on COIN/CT operations experienced 
after the September 11, 2001, terrorist attacks. The AF DCGS may need to support a wider 
variety of more-challenging intelligence problems in the higher-end threat environments 
envisioned by the 2018 National Defense Strategy. This development places a greater premium 
on AF DCGS operational agility going forward; consequently, the FY 2018 research includes 
agility as one of the enduring challenges to be addressed in the future. 

 
4 Brien Alkire, Abbie Tingstad, Dale Benedetti, Amado Cordova, Irina Elena Danescu, William Fry, D. Scott 
George, Lawrence M. Hanser, Lance Menthe, Erik Nemeth, David Ochmanek, Julia Pollak, Jessie Riposo, Timothy 
William James Smith, and Alexander Stephenson, Leveraging the Past to Prepare for the Future of Air Force 
Intelligence Analysis, Santa Monica, Calif.: RAND Corporation, RR-1330-AF, 2016.  
5 Abbie Tingstad, Dahlia Anne Goldfeld, Lance Menthe, Robert A. Guffey, Zachary Haldeman, Krista S. 
Langeland, Amado Cordova, Elizabeth M. Waina, and Balys Gintautas, Assessing the Value of Intelligence 
Collected by U.S. Air Force Airborne Intelligence, Surveillance, and Reconnaissance Platforms, Santa Monica, 
Calif.: RAND Corporation, RR-2742-AF, forthcoming. 
6 Menthe et al., 2015b. 
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Scope 
We recommend tools, technologies, and processes to address the growing demand for AF 

DCGS support, specifically for the work of the intelligence squadrons within the 480th 
Intelligence, Surveillance, and Reconnaissance Wing (ISRW) and associated units. The 
recommendations extend to core Distributed Ground Station (DGS) sites, Air National Guard 
(ANG) sites, and Distributed Mission Site (DMS) locations. Although other wings and 
organizations within the Air Force, such as the 70th ISRW, 55th ISRW, and National Air and 
Space Intelligence Center (NASIC), also perform time-sensitive intelligence analysis, we did not 
examine their processes. However, the results and methods from this project also should be of 
interest to them. 

We consider analysis of the following types of collection: high-altitude imagery, including 
electro-optical (EO)/infrared (IR) images and synthetic aperture radar (SAR) images; motion 
imagery, including FMV and wide-area motion imagery (WAMI) collections; moving target 
indicator (MTI); electronic intelligence (ELINT); and SIGINT. Although the processes for 
analyzing less-common forms of imagery, such as coherent change detection7 or hyperspectral 
imagery (e.g., from the Airborne Cueing and Exploitation System–Hyperspectral [ACES-Hy] 
sensor8) often mirror standard processes for high-altitude imagery, we do not discuss them in 
detail. 

In this research, we give special attention to short-term fixes to existing challenges and where 
AI/ML could be integrated into analytic processes in the coming years. We also consider how the 
AF DCGS could leverage the investments of partner organizations going forward. In addition to 
which tools and technologies can improve AF DCGS operations, we also look at AF DCGS 
management processes, how the AF DCGS onboards new tools and technologies, and how AF 
DCGS fosters innovation generally. We show that investments in AI/ML require supporting 
improvements in several areas. This research should be used to guide these investments. 

In Volume 1 and this report, we focus on the evolution of the AF DCGS toward a fully 
integrated, multi-intelligence (INT) organization. Specific system recommendations for each 
INT are provided in a separate restricted volume.9 The restricted volume also contains a catalog 
of the many tools, networks, and systems in use at the AF DCGS. 

 
7 See General Atomics Aeronautical, “Lynx Multi-Mode Radar,” website, undated. 
8 Amy Butler, “Eyes Wide Open,” Aviation Week Network, September 19, 2011a; and Amy Butler, “USAF Turns 
to Hyperspectral Sensors in Afghanistan,” Aviation Week Network, September 19, 2011b. 
9 Lance Menthe, Dahlia Anne Goldfeld, Sherrill Lingel, Abbie Tingstad, and Anne Stickells, Technology Innovation 
and the Future of Air Force Intelligence Analysis: Volume 3, Technical Assessment of Data Flow Maps, Santa 
Monica, Calif.: RAND Corporation, forthcoming, Not available to the general public. 
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Terminology 
For consistency with earlier PAF work and other publications, we continue to use several 

legacy terms in this report. We discuss them here for clarity, along with some of the newer terms 
that are replacing them. 

Processing, Exploitation, and Dissemination 

Joint Publication 2-01 now defines the intelligence process as consisting of six operations: 
(1) planning and direction, (2) collection, (3) processing and exploitation, (4) analysis and 
production, (5) dissemination and integration, and (6) evaluation and feedback.10 The older 
abbreviation PED refers to step 3, the first phase (or time-dominant analysis) portion of step 4, 
and the dissemination aspect of step 5. However, PED remains in common currency in the AF 
DCGS in part because it describes the specific portions of the intelligence process that AF DCGS 
currently conducts. The term has been in common usage for long enough that it is also 
sometimes used as a verb, although we do not do so here.  

Related abbreviations are CPED, where the “C” stands for collection, and TCPED, where the 
“T” stands for tasking, a subset of planning and direction. There is also the broader abbreviation 
PCPAD, which means planning and direction, collection, processing and exploitation, analysis 
and production, and dissemination.  

Sense, Identify, Attribute, and Share 

A new term—sense, identify, attribute, and share (SIAS)—was introduced in mid-2018 to 
reflect a nonlinear, information-age view of the analysis process, as opposed to the term PED, 
which is more rooted in an industrial production line view of the process.11 Unlike traditional, 
stove-piped models of analysis that are designed to answer basic intelligence questions from 
airborne collectors, SIAS emphasizes fusing data from all sources to answer more-advanced 
intelligence  questions and distribute that information widely. Although this project was 
completed before this new paradigm could be fully defined, the recommendations to automate 
basic tasks and rebalance AF DCGS efforts toward solving intelligence problems and supporting 
analysis are fully consistent with this direction. 

Collection Disciplines 

Following common practice, we refer to the various collection disciplines (or forms of 
intelligence gathering) as INTs. Over the past decade or so, the traditional term imagery 

 
10 Joint Publication 2-01, Joint and National Intelligence Support to Military Operations, Washington, D.C., July 5, 
2017. 
11 John A. Tirpak, “‘PED Is Dead’: ISR Roadmap Reaches Long for New Tech,” Air Force Magazine, August 2, 
2018. 
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intelligence (IMINT) has been slowly phased out in the IC in favor of geospatial intelligence 
(GEOINT), which is defined as “the exploitation and analysis of imagery and geospatial 
information to describe, assess, and visually depict physical features and geographically 
referenced activities on the earth.”12 GEOINT also includes imagery-derived measurement and 
signatures intelligence (MASINT) and related disciplines.13 To a lesser extent, the term imagery-
intelligence analyst (IA) is being phased out in favor of geospatial-intelligence analyst (GA), 
and the term imagery-intelligence reports editor (IRE) is being phased out in favor of geospatial-
intelligence reports editor (GRE).14 However, the term imagery-intelligence mission supervisor 
(IMS) remains standard.15 We use GEOINT, GA, and GRE in this series of reports.  

Finally, a relatively new discipline for the AF DCGS is open-source intelligence (OSINT). 
We define OSINT as “publicly available information that has been discovered, determined to be 
of intelligence value, and disseminated by a member of the IC.”16  

Phases of Analysis 

Throughout this research, we refer to phases of analysis.17 Definitions of these phases vary 
throughout the IC. We outline what we mean by these phases in Table 1.1. For the most part, we 
define the phases in terms of timeline. These are our definitions, which reflect common use and 
practice in the AF DCGS community. It should be noted that the timelines under which these 
processes are completed can be much faster than shown during crisis situations. 

Note that, in our research, we use the term all-source analyst as NASIC does to denote 
“national experts on threats that span air, space, and cyberspace domains.”18 As described in 
Chapter 2 of this report, an all-source analyst represents the deepest form of synthesis. (There 
might be some confusion here because the Air Force also names its most-generic intelligence 
career field, Air Force Specialty Code [AFSC] 1N0, an “all-source intelligence analyst.”19) 

 
 

12 Office of the National Geospatial-Intelligence Agency Historian, The Advent of the National Geospatial-
Intelligence Agency, Washington, D.C., September 2011, p. 3. The National Imagery and Mapping Agency, founded 
in 1996, changed its name in 2003 to the National Geospatial-Intelligence Agency (NGA) to reflect this larger view. 
13 National System for Geospatial-Intelligence, Geospatial Intelligence (GEOINT) Basic Doctrine, Publication 1.0, 
Springfield, Va., April 2018. 
14 Usage is inconsistent. Different documents and sites prefer different terms. 
15 IMS likely remains standard because the abbreviation for GMS, which stands for ground mission supervisor, is 
already taken. 
16 Heather J. Williams and Ilana Blum, Defining Second Generation Open Source Intelligence (OSINT) for the 
Defense Enterprise, Santa Monica, Calif.: RAND Corporation, RR-1964-OSD, 2018, p. 8. 
17 These may also be called phases of exploitation. 
18 National Air and Space Intelligence Center, “About Us: National Air and Space Intelligence Center,” webpage, 
May 2018.  
19 U.S. Air Force, Air Force Specialty Code 1N0X1: All Source Intelligence Analyst Career Field Education and 
Training Plan, Washington, D.C.: Department of the Air Force, September 26, 2016, p. 18.  
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Table 1.1. Phases of Analysis 

Phase Typical Activity Timeline 

0 Determine whether the collection is useful or must be 
retaken. Immediate threat warnings. 

Seconds to minutes 

1 Basic information of “who, what, when, and where.”  
Initial judgments of “why and how.”  

Minutes to hours 

1.5 Multisource correlation and association to provide 
context for operational needs. 
Revised judgments of “why and how.” 

Hours to days 

2 Multi-INT fusion to derive new information and answer 
intelligence questions. 
Forensic analysis of older data.  

Days to months 

3+ All-source analysis. Months to years 

 
We also sometimes refer to time-dominant versus content-driven analysis. Time-dominant 

analysis is defined as “tradecraft focused on rapid discovery by correlating what is new with 
what is known.” Content-driven analysis is “expository” and “places less emphasis on rapidity or 
the data source and greater emphasis on . . . analytic depth and explanatory narratives.”20 The AF 
DCGS today formally describes its analytic objective as providing time-dominant analysis.21  

Research Methodology 
In our research, we employed multiple qualitative analysis methods, which we illustrate in 

Figure 1.1. For some portions of the analysis, we leveraged previous PAF work on PED tasks, 
training documents, and workflows, as well as a recently developed taxonomy for ISR 
missions.22 We reviewed training documents, including job-qualification standards and training 
task lists (TTLs) for all positions. New or updated analyses largely focused on understanding 
historical and current practices and challenges, including the case studies described in Chapter 3; 
assessing the state of the art in AI/ML, as described in Chapter 4; and identifying lessons for 
developing and fielding new technologies.  

 
20 The terms time-dominant and content-driven were first defined by Jason M. Brown and David Vernal, “Time-
Dominant Fusion in a Complex World: Defining Time-Dominant Fusion and Its Interdependent Relationship with 
Airborne ISR Capabilities and Air Force DCGS,” Trajectory, November 11, 2014.  
21 Air Combat Command Manual 14-401, Air Force Distributed Common Ground System (DCGS) Training, 
Certification, and Quality Management, Joint Base Langley-Eustis, Va., April 6, 2020. 
22 Tingstad et al., forthcoming. 
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Figure 1.1. Project Approach 

 

NOTE: SMEs = subject-matter experts. 

The largest single effort in the project was the direct observation of PED processes, along 
with informal interviews with analysts.23 In addition to multiple discussions with staff within 
Headquarters Air Force/A2 and Headquarters 480th ISRW, we conducted many site visits and 
interviews to update our knowledge of PED challenges: specifically, with DGS-1, DGS-2, DGS-
3, DGS-5, DGS-IN, DMS-GA, and DMS-HI.24 We also visited the 11th Special Operations 
Intelligence Squadron and spoke with SMEs at NASIC/Global Exploitation Intelligence Group 
(GX), the National Security Agency (NSA), and the National Reconnaissance Office (NRO). 
Finally, we held informal discussions on nonmilitary AI/ML issues with SMEs from Netflix and 
Google. 

In our visits to AF DCGS sites, we updated our prior understanding of analyst workflows 
derived from the TTLs for each AF DCGS crew position. TTLs outline what skills and 
knowledge an AF DCGS crew member must demonstrate to be qualified to perform a specific 
position. For example, crew members must generally understand the types of Air Force 
platforms that collect intelligence, know how to use their workstations and software, be familiar 
with common dissemination pathways, and be able to explain why different aspects of a pre-
mission brief (PMB) are important. However, initial interviews with analysts, as well as previous 
PAF work, revealed that TTLs neither include all the steps that analysts take in conducting their 

 
23 We did not visit organizations to discuss all-source analysis because this was outside the scope of the AF DCGS. 
24 The abbreviations for states are IN = Indiana, GA = Georgia, and HI = Hawaii. We did not visit the final core site, 
DGS-4, because of resource constraints; instead, we drew from previous experience conducting multiday interviews 
at this site. See Alkire et al., 2016. 
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work nor adequately capture PED crew teamwork.25 Because of this, we developed our own 
descriptions of the analysis roles within the AF DCGS, as discussed in Chapter 2 of this report. 
We also captured our knowledge of current PED processes in what we call data flow maps, 
which we describe in the next section. 

Using our assessment of future needs and our understanding of current and potential future 
AI/ML capabilities, we produced a long-term vision for improving AF DCGS operations. The 
vision includes both short-term recommendations that can be implemented using today’s 
capabilities and longer-term recommendations that take advantage of evolving capabilities as 
they mature. A major conclusion of this research is that although technology innovation has great 
potential, the benefits cannot be realized without significant attention to the human factors—the 
organization, training, and even culture that determine whether new technologies are accepted 
and effective. Consequently, we convened a group of RAND experts to review our preliminary 
recommendations on matters of personnel, training, and organization. In this group elicitation, 
we presented the collected observations from our site visits and several preliminary 
recommendations. The panel members provided suggestions regarding implementation and other 
considerations that were included in our final recommendations. 

About Data Flow Maps 
As just mentioned, we examined TTLs for each collection discipline, as well as for multi-

INT processes, and conducted on-site observation and interviews to understand the workflow of 
the PED crews. There are many ways to view this, but, for our purposes, we focused on how 
analysts manipulate data to create the final products that are then disseminated in different ways. 
Using this analysis, we created data flow maps for each INT. 

Data flow maps are flowcharts or “circuit board” illustrations of how data are transformed 
through analysis. They show the sequence in which software tools are used, how data are passed 
from one computer system to another, and where key analytic tasks must occur. In this project, 
we use data flow maps to show how PED crews transform sensor data into intelligence products 
and services and disseminate them to the warfighter. This approach is designed to illuminate 
dependencies and identify how new tools would affect the overall analysis process. By explicitly 
showing these interconnections, we can also see how alleviating a bottleneck in one part of a 
PED crew’s work may lead to a secondary bottleneck elsewhere. It should be noted, however, 
that these maps do not display the full communications network architecture and are not intended 
to show every task performed by the PED crew. 

The maps were constructed via extensive observation and interviews with analysts at several 
AF DCGS sites. We then reviewed each initial map with at least three different experienced 
analysts to make final adjustments. In these maps, we do not model PED crew positions 

 
25 See Alkire et al., 2016; Menthe et al., 2012; and Menthe et al., 2015b.  
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explicitly but instead focus on the work of the team. The result is a representation that is 
independent of crew position and should remain relevant as the AF DCGS changes those 
positions and moves toward the SIAS paradigm. 

Figure 1.2 shows the data flow maps that distinguish between four types of objects 
(represented as the basic shapes) or places where data can dwell: collectors, which gather the 
data in the first place; systems, a broad category that includes hardware, software, and databases; 
products, which include both final products and intermediate formats, such as lines of text, .kml 
files, or .pptx files; and human analytic processes, which are steps in the process where analysts 
manipulate data and gain understanding. 

Figure 1.2. Data Flow Map Symbols—Current Processes 

 

There are also three different types of connectors indicating how data flow between objects: 
direct, indirect, and conceptual. Each movement or manipulation of the data is represented using 
one of these connectors. Direct flow refers to either machine-to-machine flow or movement that 
requires very little human intervention, such as pushing a single button. Indirect flow requires 
significant human intervention, such as filling out a complicated online form. We focused on this 
distinction because, using previous PAF research,26 we anticipated that much of the “low-
hanging fruit” for automation would involve converting indirect flow to direct flow, reducing the 
burden on analysts to manually enter data from one system to another. Finally, conceptual flow is 
where analysts review extra data to maintain situational awareness or to confirm their 
exploitation, but they do not generally copy that information forward. The bulk of an analyst’s 
time may involve such an activity, which can provide crucial context but does not usually leave a 
clear trail. 

 
26 Tingstad, forthcoming; Menthe et al., 2015b.  
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In Chapter 2 of this report, we present a generic data flow map that is broadly representative 
of current practice. In the restricted volume,27 we provide more-specific data flow maps for high-
altitude imagery, including EO/IR and SAR images; motion imagery, including FMV and 
WAMI collections; MTI; ELINT; and SIGINT. 

We further use data flow maps to illustrate some of our recommended improvements to AF 
DCGS tools and processes (see Chapters 5 and 6 of this report). Figure 1.3 shows the types of 
changes identified on those maps. 

Figure 1.3. Data Flow Map Symbols—Potential Future Entities and Connections 

 

For some recommendations, a system is merely enhanced, such as by adding a field to a 
database. In other cases, a new system is required, which may be a new software program or just 
a script that performs a specific function. We also introduce semiautomated and fully automated 
analytic processes. Finally, in addition to pink arrows indicating new direct and indirect flows, a 
dark red arrow indicates a flow that is governed by AI/ML processes (i.e., places where a human 
may be on the loop but where human intervention is no longer required).28 

In the restricted volume, we use color coding to indicate alternative pathways where different 
DGS sites use different systems or where there is a commonly used alternative procedure.29 In 
part because they support different combatant commands (CCMDs) and must share data with 
different partners, the analytic processes at different sites within the AF DCGS are similar but 
not always identical. There are some additional symbols representing different types of systems. 
Where we introduce changes, we sometimes also present more than one alternative, depending 
on which proves more technically feasible.  

 
27 Menthe et al., forthcoming. 
28 Human in-the-loop refers to an otherwise automated process with a step that must be performed by a human. The 
process effectively pauses until the human acts. Human on-the-loop is an automated process that a human may 
choose to pause or override, but where the loop will otherwise proceed without human intervention. 
29 Menthe et al., forthcoming. 
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In addition to illustrating PAF’s recommendations, the data flow maps in this volume and the 
restricted volume should be a useful reference for the AF DCGS to understand its own roles, 
processes, organization, challenges, and solutions. 
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2. Overview of the AF DCGS Today 

In Volume 1, we briefly describe how the AF DCGS operates, with particular emphasis on 
present challenges.30 This chapter provides a more in-depth discussion of how AF DCGS 
evolved and functions today. We first describe how the AF DCGS evolved into its present form 
amid the massive increase in data supply and warfighter demand. We then discuss how the AF 
DCGS is organized, both globally and within a particular site. We present a taxonomy of roles 
that describes various crew positions and show how those roles interact within the larger data 
flow map. This description, and especially the data flow map, form the baseline for assessing 
challenges and potential solutions. 

Evolution of the AF DCGS and the Growth in Supply and Demand 
History helps put the current growth in context. The AF DCGS was established in 1996.31 It 

was the direct successor to the Contingency Airborne Reconnaissance System, established in 
1992 at what was then Langley Air Force Base (AFB). Originally created to conduct PED for U-
2 overflight missions, the AF DCGS expanded greatly when it began to provide PED for FMV 
and other data collected from remotely piloted aircraft (RPA) flying in support of Operation 
Enduring Freedom (OEF) and Operation Iraqi Freedom (OIF)—and has continued to do so for 
subsequent operations.32 The AF DCGS now conducts PED around the clock for more than 50 
ISR sorties every day.33  

The Air Force ISR community underwent an intense evolution after 9/11. OEF and OIF 
drove the AF DCGS to retrain and reorganize around primarily COIN/CT missions. Much was 
gained as the AF DCGS grew. Several characteristics of COIN/CT operations affected the 
development of new systems and the tactics, techniques, and procedures (TTPs) for the AF 
DCGS: the rapid acquisition of RPA to provide 24/7 near–real-time intelligence in permissive 

 
30 Menthe et al., 2021. 
31 The AF DCGS is formally designated AN/GSQ-272 SENTINEL. The AF DCGS was initially envisioned as part 
of a family of U.S. Department of Defense (DoD) systems, including the U.S. Army’s DCGS-A, U.S. Navy’s 
DCGS-N, and U.S. Marine Corps’ DCGS-MC. In practice, however, the AF DCGS has become a much larger, 
effectively separate system. A note on pronunciation: The Air Force’s DCGS is spelled out (“dee cee gee ess”), 
whereas the others are pronounced “dee-sigs.” 
32 Although OEF and OIF greatly expanded their use, the first deployments of what was then the RQ-1A Predator 
were in support of NATO air operations in the Balkans in 1995–1996 and 1999. See Defense Airborne 
Reconnaissance Office, UAV Annual Report FY 1996, Washington, D.C.: Office of the Under Secretary of Defense, 
Acquisition and Technology, November 6, 1996; and Benjamin S. Lambeth, NATO’s Air War for Kosovo: A 
Strategic and Operational Assessment, Santa Monica, Calif.: RAND Corporation, MR-1365-AF, 2001. 
33 U.S. Air Force, “Air Force Distributed Common Ground System,” webpage, October 13, 2015b.  
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environments; the development of new capabilities that enable reach-back;34 and the focus on 
prosecuting fleeting targets and target networks, especially for CT missions.35 

The Air Force took the initiative to support these operations, including engaging in near-
continuous surge operations for many years. This required the onboarding of new personnel, 
systems, tools, and processes—essentially “building the aircraft in flight”—while shouldering 
responsibility for lives on the ground. The result has been an Air Force PED enterprise that has 
expanded quickly by almost any measure. Nevertheless, wartime conditions do not always allow 
for careful long-term planning, and thus PED technologies have been developed and 
interconnected in novel, sometimes ad hoc ways. 

Complicating this burden is that expectations have grown as well. The AF DCGS is, in some 
sense, a victim of its own success. Warfighters in COIN/CT operations have grown accustomed 
to tailored PED support, which, in turn, has raised expectations about PED responsiveness and 
availability in general. Furthermore, the targets themselves have become more challenging 
because the complexity and mobility of targets—both of which can make PED more difficult—
have been on the rise among U.S. adversaries and other potential challengers.  

Moreover, with new ISR capabilities come new demands. For example, when the resolution 
of FMV cameras in the original MQ-1 Predators was upgraded, some believed that the number of 
analysts required would go down because it would be easier to fulfill requests for essential 
elements of information (EEIs). But of course, that is not what happened; the questions only got 
harder. Instead of just detecting vehicles, analysts were now asked to provide details about color 
and model. Analysts continue to glean as much information as possible from each pixel, as they 
have done for still imagery; FMV only creates more pixels to be analyzed. As one expert noted: 

An anecdote familiar to many senior leaders concerns a numbered air force 
commander’s use of a single slide in 2007 to accentuate a point about ISR. This 
slide (used effectively in many meetings) depicted a startling contrast between 
the growth in ISR [Combat Air Patrols (CAPs)] and a rough order-of-magnitude 
measure of combatant command and national ISR requirements. Specifically, for 
every increase in ISR capability (CAPs increase), the documented needs grew at 
a greater, expanding rate. This fact underscored what we previously treated as a 
useful exaggeration: the never-ending appetite for ISR.36 

The sheer amount of data collected remains a primary challenge for the AF DCGS today. The 
number of ISR missions that the AF DCGS supports skyrocketed with OEF and OIF, increasing 

 
34 Reach-back is “the process of obtaining products, services, and applications, or forces, or equipment, or material 
from organizations that are not forward deployed” (U.S. Joint Chiefs of Staff, Joint Doctrine Division, DOD 
Dictionary of Military and Associated Terms, Washington, D.C., June 2018). 
35 Some capabilities were also lost. Gen Herbert J. Carlisle noted that insufficient emphasis was placed on electronic 
warfare and the cyber domain for a period of time because “[in] the air domain, it was less of a factor in Afghanistan 
and Iraq. We didn’t need to” (Mark Pomerleau, “Carlisle: Overworked Airmen Can’t Train for Future Threats,” 
Defense Systems, September 18, 2015).  
36 Jon Kimminau, “A Culminating Point for Air Force Intelligence, Surveillance, and Reconnaissance,” Air and 
Space Power Journal, Vol. 26, No. 6, November–December 2012, pp. 119–120. 
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almost twentyfold in 14 years.37 As early as 2009, then–Air Force Deputy Chief of Staff for ISR 
Lt Gen David A. Deptula warned that, “in the not too distant future,” the Air Force would be 
“swimming in sensors and drowning in data.”38 A PAF report from an FY 2010 project cautioned 
that, if the Air Force did not change how it conducted PED, the AF DCGS would need more than 
100,000 analysts by 2020.39  

The direst predictions of data overload have yet to materialize, largely because the WAMI 
sensors that were under development at the time, notably Gorgon Stare,40 have not been adopted 
as widely as expected. The Air Force has so far acquired only eight Gorgon Stare sensors for its 
fleet of MQ-9 Reapers. This is in part because, when so equipped, Reapers cannot also carry 
weapons, but also because Gorgon Stare resolution and frame rates are substantially lower than 
for standard FMV, which limits operational utility. Current plans no longer call for widespread 
deployment of these sensors across today’s RPA fleet.41 Furthermore, the Air Force chose to 
sidestep much of the PED problem posed by WAMI sensors by leaving the vast majority of the 
data they collect unexamined.42 Finally, fears that the AF DCGS would need to support 90 or 
more continuous ISR sorties per day subsided when OEF and OIF wound down in the mid-
2010s.43 

Nevertheless, the amount of data collected by Air Force platforms continues to grow as 
sensors improve in resolution and sensitivity—and this is not just a feature of motion imagery 
but also for collections of all types, including SIGINT, SAR imagery, and MTI. In 2011, the Air 
Force estimated that the AF DCGS ingested 700 gigabytes per day;44 the most recently available 

 
37 Timothy D. Haugh and Douglas W. Leonard, “Improving Outcomes: Intelligence, Surveillance, and 
Reconnaissance Assessment,” Air and Space Power Journal, Vol. 31, No. 4, Winter 2017. 
38 David A. Deptula, keynote speech, C4ISR Journal Conference, Arlington, Va., October 2009; and David A. 
Deptula, “Air Force ISR in a Changing World: Changing Paradigms While Optimizing ‘Low Density’ to Meet 
‘High Demand,’” in Keith Brent, ed., The Art of Air Power: Proceedings of the Royal Australian Air Force Air 
Power Conference, Canberra, Australia: Commonwealth of Australia, March 30, 2010. 
39 Menthe et al., 2012. 
40 Michael Hoffman, “Gorgon’s Gaze Set for Fall in Afghanistan,” Air Force Times, June 13, 2010. 
41 Per Rachel Cohen, “Gorgon Stare to Receive BLOS Upgrades While Air Force Explores Replacement,” Inside 
Defense, April 6, 2018: 

Gorgon Stare, the Air Force’s sensor program of record for wide-area motion imagery mounted on 
MQ-9 remotely piloted aircraft, will receive a limited slate of upgrades in the near future but isn’t 
currently expected to grow across the Reaper fleet, the service recently reported to Congress. 

42 Some say that only 15 percent of the footage has been examined; we believe this to be a generous estimate 
(Yasmin Tadjdeh, “Algorithmic Warfare: Google Versus the Pentagon, the Fallout,” National Defense Magazine, 
August 2, 2018). 
43 William Giannetti, “A Commonsense Approach to Intelligence, Surveillance, and Reconnaissance Operations,” 
Air and Space Power Journal, Vol. 30, No. 3, Fall 2016. 
44 Unclassified estimate from an earlier version of an AF DCGS fact sheet from 2011 (cited in Menthe et al., 
2015b). 
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estimate is 20 terabytes per day, a nearly thirtyfold increase.45 Even without WAMI, the rate at 
which data flow through the AF DCGS continues to grow rapidly. 

If the Air Force chooses to invest in more-capable WAMI sensors, the data rate could jump 
further. “Increment 2” of the Gorgon Stare program,46 using the Defense Advanced Research 
Project Agency’s (DARPA’s) Autonomous Real-Time Ground Ubiquitous Surveillance Imaging 
System (ARGUS-IS), can collect 10 petabytes of raw data per day—which, even with today’s 
thousandfold video-compression techniques, would be staggering.47 Moreover, the recent 
explosion in OSINT and PAI has the potential to add vast amounts of new data, depending on the 
extent to which they are incorporated into AF DCGS processes. The Air Force must anticipate 
that data-collection rates will continue to grow for the foreseeable future, and it should account 
for the risk that a new technology could generate a sudden, discontinuous jump in analytic 
demand. 

Global Organization 
Meeting the ever-expanding supply of data and demand for ISR PED requires a vast global 

capability. The 480th ISRW is the lead wing responsible for executing AF DCGS operations. All 
active-duty units involved in the AF DCGS, including the 480th ISRW, are part of the 25th Air 
Force, under the Air Combat Command (ACC).48 The core AF DCGS locations are the five 
numbered DGS sites: DGS-1, at Joint Base Eustis-Langley, led by the 497th ISR Group (ISRG); 
DGS-2, at Beale AFB, led by the 548th ISRG; DGS-3, at Osan Air Base, led by the 694th ISRG; 
DGS-4, at Ramstein Air Base, led by the 693rd ISRG; and DGS-5, at Joint Base Pearl Harbor–
Hickham, led by the 692nd ISRG.49 These sites are regionally aligned and supported by several 

 
45 U.S. Air Force, 2015b. 
46 Loren Thompson, “Air Force's Secret ‘Gorgon Stare’ Program Leaves Terrorists Nowhere to Hide,” Forbes, 
April 10, 2015. 
47 See Brian Dodson, “DARPA’s New 1.8-Megapixel Camera is a Super High-Resolution Eye in the Sky,” PBS, 
February 11, 2013; and David Hambling, “New Army Camera Promises Super-Wide Surveillance,” Wired, August 
19, 2009. 
48 Before the 25th Air Force was stood up in 2014, the AF DCGS had been under the purview of the Air Force 
Intelligence, Surveillance, and Reconnaissance Agency, which reported to Air Force/A2. (The agency essentially 
became the 25th Air Force under ACC.) See Wayne Amann, “Former AF ISR Agency Now Numbered Air Force,” 
U.S. Air Force webpage, 25th Air Force Public Affairs, October 2, 2014. 
49 Sixteenth Air Force (Air Forces Cyber), “480th ISR Wing,” webpage, September 8, 2019. 
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ANG sites, designated by state.50 Additional DMSs provide specialized capabilities.51 Figure 2.1 
shows the major AF DCGS locations. 

Figure 2.1. Major AF DCGS Sites 

 

SOURCE: U.S. Air Force, “U-2S/TU-2S,” webpage, September 23, 2015a; U.S. Air Force, 2016. 

Distributed Ground Stations Site 
Within each DGS is a complex organization with different functions and roles. In our 

research, we focus on the two main parts of AF DCGS operations, conducted chiefly by 
intelligence squadrons: the operations floor (“ops floor”) and DCGS Analysis and Reporting 
Teams (DARTs).52 

Ops Floor 

The ops floor at a DGS is primarily organized around skilled PED crews.53 Crews include 
members serving in various roles, such as exploiting, analyzing, reporting, and supervising. The 

 
50 The main ANG sites are DGS-AL, DGS-AR, DGS-IN, DGS-KS, DGS-MA, DGS-NV, and DMS-UT. Others are 
colocated with active-duty AF DCGS locations. Although no longer formally part of the AF DCGS, the 11th Special 
Operations Intelligence Squadron also conducts PED for special operations forces. See Hurlburt Field, “11th Special 
Operations Intelligence Squadron,” webpage, March 28, 2017. Also, what was formerly the DMS-NASIC continues 
to provide PED-like support. See Air Force Intelligence, Surveillance, and Reconnaissance Agency Instruction 14-
153, Air Force Distributed Common Ground System (AF DCGS) Operations Procedures, March 15, 2013, 480th 
ISR Wing Supplement, February 5, 2014. 
51 DMS-GA, DMS-MD, and DMS-HI. 
52 The AF DCGS comprises more than just intelligence squadrons. There are support squadrons that provide 
network communications and other logistics, support training and qualifications, and support collaboration with the 
IC (see Alexandre Montes, “AF NTI Training Streamlines Intel Airmen to Mission,” press release, 70th ISRW 
Public Affairs, Fort George G. Meade, Md., November 17, 2016). There are also innovation cells, technical 
directors, contract support, and leadership. We were fortunate to have the opportunity to speak to SMEs in all of 
them. We also note several areas in the final recommendations where assistance in some of these areas, including 
mission management and training, are needed.  
53 This is true for both active-duty and ANG DGS sites, although organization at DMS locations may differ. When 
we say “DGS sites,” this is generally shorthand for most AF DCGS locations. 
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term crew arose out of the sense that PED analysts should not be considered an added luxury for 
ISR missions but rather an integral part of an aircraft’s ground crew or logistics tail. This is a 
particularly important consideration for RPA, a term that the Air Force uses instead of unmanned 
aerial vehicle or unmanned aircraft system to emphasize that these platforms require an 
extensive human crew offboard.54 PED crews conduct Phase 0 and Phase 1 analysis (as defined 
in Chapter 1), meaning that they are the first to see the collections, deriving what information 
they can from them in a matter of seconds, minutes, or hours. 

Since the inception of the AF DCGS, the organization of PED crews has been such that 
different crews on the ops floor have conducted PED separately for the data collected by 
individual sensors on ISR platforms. To a large extent, this is still true today, with the notable 
exception that all high-altitude imagery collected by the aircraft supported by a given DGS site 
may be exploited by a combined team on the ops floor (sometimes called a “super-crew”). 
Because PED crews are associated with both a collection discipline and a platform, they may be 
referred to in either way—for example, as an “FMV crew” or a “Reaper crew” (because 
personnel are generally qualified by INT, the INT name is more commonly used). When a 
platform carries more than one type of sensor, it is generally supported by more than one PED 
crew.55 This is referred to as the platform-centric or INT-centric approach to organizing PED.56 
Depending on the size of the DGS site and the level of activity, there could be as many as a 
dozen PED crews on the ops floor or as few as one. Figure 2.2 shows a snapshot of part of an ops 
floor. 

 
54 At one time, for example, an estimated 192 people were required to support a 24-hour MQ-1 Predator combat air 
patrol, including mission control, launch and recovery, and PED elements. This large figure includes manpower 
factors to account for multiple shifts and absences. See Menthe et al., 2012. 
55 For example, the U-2S carries both imagery and SIGINT payloads. U.S. Air Force, 2015a. 
56 Menthe et al., 2012. 
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Figure 2.2. AF DCGS Operations Floor 

 

SOURCE: U.S. Air Force, 2015b. 

DCGS Analysis and Reporting Team 

DARTs were created in 2007 to fuse data from multiple sensors.57 Generally speaking, the 
DART conducts Phase 1.5 analysis (as defined in Chapter 1), meaning it creates fused, 
actionable intelligence within a matter of hours or days to provide context to meet operational 
needs. Prior to the DART, there was little ability for AF DCGS analysts to attain a broader view 
of the missions that they supported or to use the information they discovered in other ways. As 
one commander wrote: 

In the past, Air Force DCGS analysts processing, exploiting, and disseminating 
intelligence from airborne collection had limited access to any intelligence other 
than that derived directly from one or two airborne platforms and associated 
sensors.58 

It took several years for the DART to come into its own, however. One reason for this is that 
the INT-centric division of labor between PED crews naturally favors a stovepiped intelligence 
process. This is not unique to the AF DCGS, of course; rather, it is a general feature of 
intelligence analysis: “Collection stovepipes emerge because the separate collection disciplines 
are often based on different technologies, are managed independently, and often are rivals to one 

 
57 Brown and Vernal, 2014. 
58 Brown and Vernal, 2014. 
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another.”59 There are also advantages to INT-centric organization from an efficiency standpoint: 
It works well for training and scheduling personnel who share common skills.60 

The portfolio of the DART has changed considerably over the years. When certain DGS sites 
were in the throes of punishing surge conditions, the DART was reduced to a skeleton crew 
performing more-limited tasks, such as preparing PMBs because the analysts were needed to 
perform first-phase analysis on the ops floor.61 Now, however, the DART has expanded and its 
missions are formally recognized.  

The flexibility in the DART’s structure is part of what enables it to be innovative, not just in 
terms of new tools but also in developing new TTPs. Some sites, for example, are experimenting 
with a mission analysis cell in the DART that is dedicated to conducting assessments of the PED 
process itself. In general, the DART investigates a variety of pressing intelligence questions that 
can be probed—wholly or in part—through Air Force airborne ISR platforms, in addition to 
supporting immediate operational needs related to mission support and threat warning. It also 
gives a glimpse of how the AF DCGS may evolve in coming years, as discussed in later 
chapters. 

Crew Positions and Roles 
Prior to the start of their mission, most PED crew members conduct common tasks associated 

with attending the PMB, such as fulfilling the pre-mission readiness checklist, initializing 
computer systems and programs, and participating in the debriefing that accompanies a crew 
changeover. During the mission, each crew member executes individual tasks—not necessarily 
sequentially—based on their crew position to accomplish their work, whether it be to support an 
ISR platform or to probe a relevant intelligence question. Although each crew position involves 
distinct tasks—tasks that can vary depending on operational circumstances—we find that most of 
them can be grouped usefully into four analysis roles: exploiter, investigator, reporter, and 
supervisor. Depending on the collection discipline, some crew members may perform more than 
one role: for example, an exploiter may also conduct analysis.62 Note also that different roles 
sometimes include similar tasks. These roles are summarized in Table 2.1 and are defined after 
the table. 

 
59 Mark M. Lowenthal, Intelligence: From Secrets to Policy, 5th ed., London: SAGE Press, 2012, p. 222. 
60 Menthe et al., 2012. 
61 There was also concern at some point that the DART would conduct full Phase 2 intelligence and “compete” with 
NASIC, but these concerns no longer seem to arise. These days, few seem concerned that the appetite for 
intelligence can be so easily sated. 
62 These categories of PED crew positions were developed by PAF by studying TTLs and through direct 
observation during site visits. They are not doctrinal. 
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Table 2.1. Analysis Roles  

Role  Description Sample Positions 

Exploiter Performs first phase analysis of ingested data. 
Answers fundamental questions about specific 
collections 

GA, signals analyst, cryptologic 
operator (CO) 

Investigator Pursues intelligence questions. Fuses 
information. Conducts deeper levels of synthesis 

Correlation analysis (CAN), 
mission support analyst (MSA), 
many DART members 

Reporter Prepares and stores intelligence products and 
warning messages 

GRE, technical reporter 

Supervisor Oversees missions and personnel, clarifies 
tasks, performs quality control, conducts 
assessments 

IMS, electronic intelligence mission 
supervisor (EMS), GMS 

 
An exploiter is a crew member who focuses on answering basic “who, what, when, and 

where” questions through observation and standard data-manipulation techniques, such as that 
required for accurate geolocation of a signal. They may also address “why and how” questions to 
the extent that the requested EEIs implicitly (or explicitly) require a determination of activity and 
intent. (This is part of Phase 0 and Phase 1 analysis.) A crew member in this role also often 
conducts background research to understand the context of the mission or improve their general 
situational awareness. Before interpreting the substance of the collection, an exploiter may use 
this auxiliary information to address broader questions, such as “Does the collection cover the 
correct area?” “Is it capable of providing the requested EEIs?” “What else of significance is 
present?” “Is there anything here of immediate concern with respect to national security or 
protection of life?” Depending on the INT, they might dynamically retask or retune the collector 
using these preliminary assessments. Next, the exploiter will attempt to extract the requested 
EEIs from the data at hand. They will then prepare the information in the appropriate product 
format for transmittal via active (e.g., email) or passive (e.g., databases) means. Note that, in 
many cases, the exploiter does not generate the final products—or at least, not all of them—but 
sends the information to a reporter to complete the process and disseminate the information. 
Examples of crew positions that fulfill the exploiter role are the GA63 and the CO.  

An investigator has a job description that is somewhat distinct from that of the exploiter. This 
type of analyst does not necessarily focus on active missions, although these might be taken into 
account; rather, they tackle broader problems. These problems can take the form of key 
intelligence questions that may require days (or months) of collection to answer, or they can 
focus on improving the quality of the missions themselves. In performing the former type of 
analysis, the investigator will typically draw from multiple sources to understand long-term 
patterns, develop context, and interpret activity over a long period. As opposed to the exploiter, 
who might state that “there is a red car,” an investigator could say “the preponderance of 

 
63 Also known as an imagery analyst. 
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evidence suggests that the red car belongs to a terrorist leader.” Another type of investigator 
could be employed to look critically at mission data to provide feedback on how the collection or 
exploitation might be better conducted in the future. This feedback might affect human as well as 
automated decisionmaking. Crew positions in the investigator role may also prepare reports that 
might be used to provide context for others, inform decisionmakers, or be stored to help build the 
case toward answering key intelligence questions down the road. Finally, some investigators 
work to enhance the reporting from active missions by adding context. Some examples of crew 
positions that fulfill the investigator role are the CAN and the MSA. In some cases, an MSA or a 
CAN might support more than one PED crew. 

A reporter prepares intelligence products. Some reporters create finished products at the end 
of a shift, while others focus on providing threat warnings. Reporters must be familiar with how 
information needs to be transmitted, to whom, and via what means. They must also be familiar 
with the various messaging formats and systems necessary to transmit the information. Some 
examples of crew positions that fulfill the reporter role are the GRE, product reporter, technical 
reporter, and threat analyst. Many of these positions also have additional duties. 

Supervisors can be present at many levels at a DGS site. Each PED crew has a supervisor—
who may supervise more than one crew at a time—and there is also a mission operations 
commander who oversees the entire ops floor or some part of the ops floor who is dedicated to a 
subset of missions related to a common area, operation, or theme. Supervisors provide direction, 
such as determining which requirements each analyst will fulfill, assigning daily tasks, and 
enforcing quality control (e.g., ensuring that a report meets supported unit and legal standards). 
Sometimes, the quality-control process halts the workflow because the analyst is waiting for their 
assessment to be checked. Supervisors may also be responsible for communicating with the 
original requester of an EEI to clarify its intent. Some examples of crew positions that fulfill the 
supervisor role are the IMS, GMS, the EMS, and mission operations commander. 

Data Flow and AF DCGS Processes 
As discussed in Chapter 1 of this report, we developed data flow maps to depict current and 

potential future AF DCGS processes and how the various roles and supporting data infrastructure 
interact with one another. We discuss data flows for the ops floor and the DART in the next 
sections. 

Ops Floor 

Data flow maps are different for each INT. However, it is possible to construct a generic data 
flow map to illustrate the key points. Figure 2.3 shows a generic data flow for the ops floor, with 
colored underlays to indicate the four analysis roles discussed in the previous section. Note that 
the divisions between these roles are approximate and sometimes overlap. Additionally, the 
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exploiter often performs some of the investigator role, particularly while waiting for the platform 
that they are supporting to arrive on station. 

Figure 2.3. Generic Data Flow Map—Current 

 

NOTE: IRC = internet relay chat. 

The map is designed to be read from top to bottom: the arrows are arranged to show the 
process beginning with collection,64 moving through processing and exploitation, and ending 
with dissemination and storage. 

After the data are collected, they are processed to remove noise and transform them into a 
more standard format that is suitable for transmission and storage. Depending on the sensor, this 
might occur onboard the aircraft or at the AF DCGS itself, which is why we mark the process as 
only partly in the exploiter role. But where it requires a human in-the-loop or on-the-loop, the 
exploiter is responsible for this task. Where the processing must be assisted by the human, the 
processor and viewer are usually two aspects of the same tool. 

 
64 Collection is not, of course, part of the PED process, but we include it to provide a familiar anchor to the diagram. 
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Once the data are in a human-readable format within the AF DCGS, the exploiters can 
analyze the collection. This includes determining whether the collection is useless (e.g., an image 
that shows only clouds) or potentially threatening (e.g., an unexpected emission on a reserved 
frequency). In those cases, the exploiter can initiate dynamic retasking or cross-cueing of 
sensors, either by retuning the sensor directly or communicating with the pilot and sensor 
operator to request the changes (e.g., adding a new target to the collection deck). If the exploiter 
determines that what they have found may constitute an immediate threat to the aircraft in the 
vicinity, they initiate the threat-warning process: They send the information to a reporter, who 
issues alerts in the proper formats. 

During their analysis, exploiters often consult a variety of databases and other services to 
learn context and maintain situational awareness, as shown by the blue dotted line. Several 
resources, such as an operational picture display, a database, and an IRC65 system, are kept in the 
background for situational awareness, which we show as optional conceptual flow. Sometimes, 
an analyst in the investigator role (e.g., MSA) assists in this process. Finally, when the exploiter 
completes their work—which generally consists of detecting and identifying objects, persons, or 
signals of interest—they record this information in some form of product. They then email this 
product to whoever initially requested the collection and store it in various product repositories. 
We have cross-hatched this part of the process as part exploiter, part reporter because different 
INTs do this differently depending on how standardized this process is. 

Depending on the INT, the reporting process may involve additional steps to create more-
complex reports and products. In many cases, a reporter helps compile additional information. 
With FMV, for example, typically one exploiter watches the video, another maintains 
communication with the mission-control element, and a reporter compiles information on 
significant events during the shift to enable them to write the final mission report. 

Finally, at the end of the shift, the PED crew issues various reports. The supervisor provides 
quality control, records statistics for mission assessment processes, and prepares the crew for the 
changeover to the next shift. Sometimes, these steps are performed piecemeal throughout the 
shift and compiled at the end. The free-floating “Mission Management” text on the far left of the 
figure indicates that the report subsequently enters various administrative and assessment 
processes that are outside the PED process but support it directly. 

Although most discussion about making the AF DCGS more efficient centers on the 
exploiter role, the data flow map emphasizes that other roles—notably that of the reporter—can 
affect the overall process. Improvements in all areas will be needed if a PED crew is to be able to 

 
65 The most common IRC client is mIRC. Since its inception in 1994, mIRC has become so widely known that 
many refer to any IRC client as (somewhat redundantly) “mIRC chat.” According to its creator, Khaled Mardam-
Bey, the m in the abbreviation has no confirmed meaning. As he puts it in his official frequently asked questions list: 
“It quite possibly stands for ‘moo,’ or perhaps even MU.” The word MU links to a page that indicates that it is a 
Chinese ideogram for “no-thing” (mIRC.com, “Personal FAQ,” webpage, 2020). 
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perform their tasks more rapidly. Otherwise, the bottleneck may just move to a different role or 
position. 

DART 

The workflow in the DART is not quite as amenable to a data flow map analysis because it 
differs considerably depending on the type of problem or data fusion being worked on. 
Moreover, because these activities are not usually tied to an active mission, there is not always a 
clear anchor point (indeed, sometimes the analysis can be self-initiated rather than in response to 
a request for information). However, we note that almost all of the DART’s activity can be 
considered a form of the investigator role. We now take a closer look at this role and describe the 
four main types of analysis that DART investigators perform. 

These four types of analysis, which are usually conducted more or less sequentially, are 
researching, manipulating, understanding, and disseminating. We give examples of these kinds 
of analysis in Figure 2.4. Note that these stages assume that the data in question have already 
been collected and processed. The data also might already have been exploited (the DART rarely 
performs first phase analysis). The analyst’s objective throughout these stages is to complete and 
transmit information, usually through fusing information from multiple data sources, to answer a 
broad intelligence question. 

Figure 2.4. DART Investigator Functions 

 
 

Researching is usually the first stage of an investigation. This can include everything from 
attending PMBs (a relatively passive activity) to exploring existing reports and talking with 
others who may have looked at a similar topic or geographic area in the past. In addition to 
developing historical context, an analyst might be actively involved in monitoring an operation 
to develop understanding or checking CCMD, air component, or other lists of key types of 
intelligence questions or threads that could help an analyst determine when an observation is 
broadly significant. The greatest challenge with this work phase is knowing where to look and 
what for. Although geographic area provides one foundation by which to scope potential 
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research efforts, the most relevant previously exploited or analyzed information must be 
discoverable, and the analyst must be able to distinguish significant insights. 

Manipulating starts when an analyst or team receives processed data and/or previously 
exploited information and begins doing something new with it. The greatest challenge with this 
work phase is managing the number of disparate programs an analyst must use. Much of this 
work involves comparing the particular collection being analyzed (e.g., the image) to reference 
data to find anomalies or fusing data from multiple sources to seek new patterns. Using different 
visualization tools is also an important part of the manipulation process for human analysts. 

Understanding is the process by which an analyst or team determines the significance of 
observations (or lack thereof). The greatest challenge with this work phase is acquiring sufficient 
context to make sound judgments. 

Disseminating involves making sure the right people have access to the right information at 
the right time. Sometimes, the result is a PowerPoint presentation. Other times, it may be a 
posting to an intelligence site or even a blog. The greatest challenge with this work phase is 
ensuring that all the formatting and legal requirements have been met and that the work is 
received at the correct locations. 

Data Flow and the Spectrum of Synthesis 

Another way to think about data flow in relation to the types of information used is the 
“spectrum of synthesis” shown in Figure 2.5. The spectrum of synthesis shows how data flow in 
a very general sense through the analysis process. First, there are single-INT processes of basic 
and advanced exploitation. The basic process involves a single set of data. Advanced processes 
might involve comparing several sets of data, such as looking at two different images of the 
same site. This is generally performed by the PED crews on the ops floor today. The DART is 
responsible for multisource analysis and multi-INT fusion, although some multisource analysis is 
part of the investigator role in PED crews as well. The distinction between multisource and 
multi-INT analysis was made specifically to distinguish between those roles. In multisource 
analysis, products are pulled together and correlated, but true multi-INT analysis can go deeper 
and involve additional work with the raw data. The end of the spectrum is all-source analysis, 
which we use broadly here to include target system analysis (TSA) and other functions that are 
not done in real time.  
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Figure 2.5. Spectrum of Synthesis 

 
SOURCE: Adapted from Alkire et al., 2016, p. 46. 
NOTE: GMTI = ground moving target indicator. 

As discussed in Volume 1 and later chapters of this report, AI/ML may be able to push 
human effort down the spectrum of synthesis toward more-challenging work. But it is important 
to realize that synthesis is a chain that must be supported all the way down, or one risks creating 
unintended bottlenecks in the PED process. 

AF DCGS Competencies 
As the overview of organization, roles, and data flows just presented suggests, the AF DCGS 

is responsible for many different types of activities that support warfighters and advance national 
security objectives in various ways. We conclude this overview by thinking through a business 
model for the AF DCGS that will support technological change today and lay the groundwork 
for more change in the future.66 A key element is the value proposition: the unique mix of 
products and services that an organization offers. There are three general competencies that the 
AF DCGS provides to the warfighter that we (loosely) call supporting missions, supporting 
analysis, and solving intelligence problems. These are summarized in Figure 2.6. These 
competencies are usually provided by analysts in different roles. This chart represents our 
analysis and observation of AF DCGS training documents and operations. 

 
66 Of course, the AF DCGS is not a business, but considering such organizational principles as this can be an 
instructive exercise. 
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Figure 2.6. AF DCGS Competencies 

 

The AF DCGS supports missions by (1) providing near–real-time intelligence to supported 
units on the ground; (2) providing intraday intelligence (within approximately 24 hours) to fulfill 
ISR requirements (e.g., with high-altitude imagery); (3) conducting dynamic retasking and cross-
cueing of sensors; and (4) providing urgent threat warnings to ISR platforms and other aircraft in 
the vicinity. The threat warning aspect of AF DCGS is particularly salient because it is one of the 
few Air Force–centric missions that the AF DCGS regularly conducts today (most AF DCGS 
PED supports other components). Although PED consists largely of single-INT processes, multi-
INT fusion and cross-cueing are increasingly important as AF DCGS “customers” come to 
expect more. Today, this competency is generally fulfilled by airmen performing the exploiter 
and reporter roles on the ops floor. As discussed in Chapter 6, AI/ML might be able to perform 
or assist with many of the tasks in this competency, freeing analysts to focus on other 
competencies. 

Supporting analysis consists of five interrelated functions: (1) provide on-the-job and 
continuation training for analysts; (2) develop and capture TTPs to conduct PED for new 
sensors, new missions, and new areas of operation; (3) monitor the effectiveness and efficiency 
of analytic processes (e.g., conducting assessments); and (4) foster innovation to improve these 
processes, which may be based on these assessments or achieved through other means. These 
functions are done by various analysts and groups in the supervisor role. As we discuss later, this 
competency may be expanded to include helping to monitor, train, and deploy future AI/ML 
applications.  

Solving intelligence problems tailored to user needs is both a link to the history of the AF 
DCGS in supporting ground operations in Afghanistan and Iraq and a link to its future. The AF 
DCGS increasingly answers requests for information regarding broader intelligence problem sets 
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that bear significance beyond the air tasking order cycle or mission day. This has partly grown 
out of the regional alignment of DGS sites with other CCMDs, such as the U.S. Indo-Pacific 
Command, where intelligence needs are less driven by COIN/CT operations than they are in U.S. 
Central Command. Post-ingestion or “forensic” analysis of WAMI data could also be part of this 
process if it is tied to a request for information. Developing this type of understanding is 
inherently a longer-term process of knitting together data and information. These functions are 
primarily performed today by analysts in the investigator role in the DART.  

Although the AF DCGS today works in all of the above competencies to some degree, the 
general weight of effort is on supporting missions. This is partly because of the challenges 
discussed in Volume 1: High demand for short-term PED, burdensome reporting requirements, 
and other factors mean that significant analyst attention is consumed with these tasks. The ops 
floor reflects this emphasis, with crews largely organized around platforms and INTs. As we 
discuss in later chapters, the use of AI/ML for these tasks might allow the AF DCGS to rethink 
how it organizes and allocates the weight of effort for human analysts across the three 
competencies, with potential benefits for addressing the enduring challenges of effectiveness, 
efficiency, use of human capital, and agility. 
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3. Improving Efficiency, Effectiveness, Human Capital, and Agility: 
Lessons from Historical Case Studies 

Volume 1 identifies efficiency, effectiveness, the use of human capital, and agility as major 
objectives for improving the AF DCGS.67 In this chapter, we take a deeper look at the challenges 
involved in meeting these objectives as illustrated by past operations and experiences. We select 
four case studies that highlight the challenges associated with each of the above objectives: 
dynamic targeting (efficiency), deliberate targeting (effectiveness), airman resiliency (use of 
human capital), and humanitarian assistance and disaster relief (agility).68  

Dynamic Targeting 

Background 

Dynamic targeting is the process of prosecuting targets of opportunity—both unplanned and 
unanticipated.69 These may include both fixed and mobile targets. Joint doctrine defines the 
standard process for dynamic targeting in terms of six largely sequential steps: find, fix, track, 
target, engage, and assess (F2T2EA), as shown in Figure 3.1.  

 
67 Menthe et al., 2021. 
68 We look primarily at examples beyond recent COIN/CT operations. Although ISR support to such missions as 
understanding civilian patterns of life and striking a high-value individual are among the most common in today’s 
fight, the AF DCGS must prepare for other missions as well. 
69 There are two types of targeting: deliberate and dynamic. Notably, as indicated in joint doctrine: “Neither is 
indicative of the target to be engaged but is more closely aligned with the planning phase in which the target is 
identified and prosecuted.” In terms of dynamic targeting, an unplanned target is a known target that was not 
nominated for engagement because of priority or some other consideration, while an unanticipated target is an 
unknown target or one that was not expected to be in the area (Joint Publication 3-60, Joint Targeting, Washington, 
D.C., January 31, 2013, p. II-1). 
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Figure 3.1. Find, Fix, Track, Target, Engage, and Assess Cycle 

 
SOURCE: Joint Publication 3-60, 2013, p. II-23. 

The first step is to find the target. Initial analysis of the adversary might indicate where the 
target is likely to be located and what operating procedures the target might employ, which 
provides a starting point for employing ISR assets. Collection managers task these assets to 
detect emerging targets and characterize them (e.g., determine whether they need to be engaged), 
shaping the tasking instructions using the initial intelligence. 

Once a target has been found, it must be fixed. Fixing is the process of identifying the target 
and its location with sufficient accuracy to employ weapons if needed. This step may require 
additional collection. Fixing the target generally requires the use of precision point mensuration 
to provide geographic coordinates in all three dimensions. If possible, the time available to 
engage the target may be estimated. 

After the target has been fixed, it must be tracked so that operators will know if it moves 
before the F2T2EA process can be completed. Although the target is being tracked, other 
targeting functions, such as weaponeering,70 point mensuration, and collateral damage estimation 
may be conducted to support the attack.  

 
70 Weaponeering means choosing the right weapon for the target. Formally, it is “the process of determining the 
quantity of a specific type of lethal or nonlethal means required to create a desired effect on a given target” (Joint 
Publication 3-60, 2013, p. II-15). 
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The next step is to target the target.71 A host of related targeting functions occur during this 
step as appropriate. These include estimating collateral damage, planning for poststrike 
assessment, and receiving approval to strike. 

The final steps are to engage the target and then assess the effectiveness of the engagement. 
Often, this battle damage assessment requires additional collections to confirm the weapon 
effects. 

Mobile targets are perhaps the most challenging type of dynamic target because they can 
employ their mobility as a survivability measure. The key to defeating this kind of target with the 
F2T2EA process is speed: completing the dynamic targeting process swiftly enough to engage 
the target before it can move (e.g., to a concealed or hardened position where it may be 
unfeasible to find or strike). In some situations, the platforms employed in the strike may have 
fuel or route requirements, adding to the planning constraints. This drives a need for tight tactical 
and operational coordination.  

In target-poor environments, there may be only a few mobile targets to process at a time. But 
in the opening days of a more conventional fight, the number of mobile targets can rise rapidly. 
Improvements in AF DCGS analytic capabilities may result in “finding” more targets initially, 
but if the remaining steps are not optimized as well, many of these targets may disappear before 
they can be fully prosecuted. This difficulty was seen very clearly in the Scud missile–hunting 
operations during the Persian Gulf War.  

Case Study 

Stopping Saddam Hussein’s mobile Scud missile attacks on Israel was an early priority in 
Operation Desert Storm (1991) because the prospect of Israeli involvement threatened to crack 
the fragile coalition of Western and Arab states.72 To persuade Israel to remain on the sidelines, 
the United States made the destruction of Iraqi Scud missiles a major objective of the air 
campaign.73 Therefore, a total of 4,754 anti-Scud sorties were planned during the 43-day air 
campaign in the Kuwaiti theater.74 

The Iraqi military had two primary means of launching Scud missiles: fixed launchers and 
mobile transporter erector launchers (TELs). Initial intelligence estimates put the Iraqi Scud 
inventory at 28 fixed launchers and 36 TELs (although post-war analyses later labeled the TEL 

 
71 Although perhaps redundant, this usage is standard. 
72 William Rosenau, Special Operations Forces and Elusive Enemy Ground Targets: Lessons from Vietnam and the 
Persian Gulf War, Santa Monica, Calif.: RAND Corporation, MR-1408-AF, 2001, p. 43. 
73 J. Michael Kennedy, “U.S. Rushes Defenses to Israel: American Troops to Operate Two Patriot Batteries: Gulf 
War: The Move May Forestall an Immediate Retaliatory Strike by the Jewish State After Two Attacks on Tel Aviv. 
Allied Warplanes Step Up the Search for Scud Mobile Launchers,” Los Angeles Times, January 20, 1991. 
74 Mark David Mandeles, Thomas Hone, and Sanford S. Terry, Managing “Command and Control” in the Persian 
Gulf War, Westport, Conn.: Praeger Publishers, 1996, p. 76. 
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estimates “sketchy and too low”75). The first three days of the air campaign called for 356 anti-
Scud sorties against well-known Scud sites, plus Scud manufacturing and maintenance sites to 
cripple Iraq’s capabilities. Unfortunately, the fixed launcher sites proved to essentially be 
decoys, diverting attention away from the dispersed, mobile TELs that launched 12 missiles over 
those first three days.76 Having failed to suppress Iraq’s missile-launching capability by 
destroying fixed sites, military planners set their sights on the mobile Scud launchers.  

The goal was to find and destroy the TELs before they could fire. However, poor weather, 
the size of the area in which the TELs could hide, and Iraqi TTPs made them elusive targets: In 
addition to effective concealment prior to launch, Iraq cut launch preparation times down to just 
30 minutes.77 This deception and speed made executing the F2T2EA process prelaunch nearly 
impossible. 

Unable to strike Scud launchers prior to missile launch, U.S. and coalition forces adapted 
their TTP to attempt to complete the F2T2EA process immediately following a launch. To do so, 
planners established “kill boxes” in areas of suspected Scud activity. Strike and other support 
aircraft patrolled the kill boxes seeking to detect a launch, identify the firing location, acquire the 
TEL with onboard sensors, and deliver ordnance effectively before the Scud missile crew could 
pack up the TEL and slip away. Unfortunately, “by wars end, nearly every type of strike and 
reconnaissance aircraft employed in the war participated in the attempt to bring this threat under 
control, but with scant evidence of success.”78  

Finding a TEL after it had launched a missile was the easy part: “once ignited, Scud missile 
motors produced a visible and very hot plume, and this plume was something that pilots 
overhead could see and satellites in space could detect.”79 The problem lay with the subsequent 
steps in the F2T2EA process. On-board sensors of patrolling aircraft were unable to fix mobile 
Scud launchers in a timely manner because the launchers’ infrared and radar signatures were 
“virtually indistinguishable from trucks and other electromagnetic ‘clutter’ in the Iraqi desert.”80 
The identification process was confounded mainly by commercial tractor-trailer trucks and 
decoys. One statistic illustrates the challenge: Of the 42 cases of visual observation by patrolling 
strike aircraft, only eight aircrews could sufficiently acquire the TELs to deliver ordnance. And 

 
75 This was the exact phrase from DoD’s final report to Congress (DoD, Conduct of the Persian Gulf War Final 
Report to Congress, U.S. Government Printing Office: Washington, D.C., 1992, p. 150. 
76 Thomas A. Keaney and Eliot A. Cohen, Gulf War Air Power Survey: Summary Report, Washington, D.C.: U.S. 
Government Printing Office, 1993, p. 86. 
77 Perry Jamieson, Lucrative Targets: The U.S. Air Force in the Kuwaiti Theatre of Operations, Washington, D.C.: 
Air Force History and Museums Program, 2001, p. 48. 
78 Keaney and Cohen, 1993, p. 17. 
79 Mandeles, Hone, and Terry, 1996, pp. 74–76. 
80 Rosenau, 2001, p. 34. 
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even in those instances, ineffective battle damage assessment left coalition forces unclear on how 
many mobile Scuds were destroyed.81  

Various ISR aircraft and satellites were employed to overcome the limitations of the on-
board sensors of strike aircraft, but the PED process often was too slow to make a significant 
difference. For example, the joint surveillance and target attack radar system (JSTARS) was 
employed to provide additional data, but it did not lead to greater success in destroying mobile 
Scud launchers “because the time it took to analyze JSTARS images and then communicate with 
patrolling F-15Es proved too long.”82 

U.S. Space Command’s Scud-warning process was faster—using satellite observations, it 
could provide an approximately four-minute warning to U.S. Central Command’s command-and-
control centers and Patriot battery commanders. This allowed Patriot battery commanders to 
effectively engage some of the incoming missiles, but dissemination of the warnings was either 
too fractured or too slow to effectively cue patrolling strikers to the mobile Scud TELs.83 In the 
aftermath of the Gulf War, the Defense Science Board concluded that “a capability to find and 
destroy . . . Scuds before they launch implies hitherto unachieved integration and a new level of 
processing of surveillance data.”84  

Lessons 

This case highlights the importance of efficiency in the analysis process, and specifically, the 
need for timeliness. It also highlights another issue: Although an efficient process clearly is 
essential for dynamic targeting, an efficient process is not always sufficient to improve 
operational outcomes. The entire F2T2EA chain must be timely, and analysis is but one part of 
that longer process.85  

Much has been done to improve PED efficiency since Operation Desert Storm, but 
expectations for PED efficiency have also risen. The ability to supply near–real-time intelligence 
has engendered a demand for near–real-time intelligence: Process timelines that would have been 
considered efficient in 1991 would be considered broken today. Moreover, improved adversary 
TTPs will continue to force a tighter analytic cycle in future operations. As discussed in Volume 
1, making analytic processes more efficient to meet these challenges and demands is one area 
where AI/ML could make a significant contribution. 

 
81 Keaney and Cohen, 1993, p. 87.  
82 Mandeles, Hone, and Terry, 1996, p. 78. 
83 Mandeles, Hone, and Terry, 1996, p. 77. 
84 Defense Science Board, Lessons Learned During Operations Desert Shield and Desert Storm, Washington, D.C., June 
8, 1992, p. 74. 
85 This fact cautions against using operational outcomes as the sole measure of PED value because it may easily 
lead to situations in which the PED process was handled very well, but the desired outcome was not achieved for 
other reasons. It also leads us to note areas outside PED where inefficiencies must be addressed. 
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Deliberate Targeting 

Background  

Deliberate targeting—which is related to the concept of strategic attack—dates to the earliest 
airpower theorists. Although there are variations between the ideas of different theorists, the 
general concept is to strike key strategic targets in a way that creates outsized effects across the 
opposing military. The targets usually involve key functions, such as early warning systems, 
command and control, and communications. Targeteers conduct a TSA to determine which 
targets are most critical. If the TSA is successful, the analyst might uncover targets that, if struck, 
could have a crippling effect on the adversary.  

Conducting a proper TSA requires multiple techniques and is often quite data intensive. A 
TSA report can take months to produce. Where dynamic targeting requires rapid analysis and 
effective operational synchronization, the intelligence work required for supporting this kind of 
deliberate targeting has historically been quite different. It often requires collecting large 
amounts of data over time, patiently waiting for intelligence gaps to be closed, accessing the 
information, wading through that information, and processing it in a way that yields new 
understanding of the adversary’s strengths and weaknesses.  

Case Study 

Operation Allied Force (OAF) illustrates some of the challenges of providing ISR support to 
a strategic attack. The stated objectives for the United States and NATO in OAF were to (1) 
ensure a verifiable stop to all military action and the immediate ending of violence and 
repression; (2) ensure the withdrawal from Kosovo of the military, police, and paramilitary 
forces; (3) agree to the stationing of an international military presence in Kosovo; (4) agree to the 
unconditional and safe return of all refugees and displaced persons and unhindered access to 
them by humanitarian aid organizations; and (5) provide credible assurance that Serbian 
President Slobodan Milošević would negotiate a political settlement for Kosovo in conformity 
with the Rambouillet Accords and the Charter of the United Nations.86 

To achieve these objectives, NATO launched an air campaign beginning on March 24, 1999, 
and ending 78 days later, when Milošević accepted NATO’s conditions for surrender.87 Although 
NATO was ultimately successful in achieving its overall objectives, a lack of clarity in targeting 
strategy led to a suboptimal application of air power and ISR assets.  

Supreme Allied Commander in Europe GEN Wesley Clark initially planned simply to “grind 
away” at Serbian forces.88 The goal was to “degrade” and “damage” Yugoslavian assets until 

 
86 NATO, “The Aims of the Air Campaign,” October 30, 2000. 
87 The terms were essentially the same as the stated objectives for OAF (CNN, “Milosevic Accepts Peace Plan, 
Finnish Envoy Says,” June 3, 1999). 
88 Eric Schmitt, “Weak Serb Defense Puzzles NATO,” New York Times, March 26, 1999. 
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Milošević accepted NATO terms. The plan was “driven by the assumption that the operation 
would entail, at most, a two- to three-day series of air strikes directed at approximately 50 
targets.”89 NATO’s first strikes were mainly against “enabling targets,” such as antiaircraft 
artillery that, once eliminated, would allow for easier strikes against other assets, but they also 
targeted critical infrastructure (e.g., the electrical power grid of Kosovo’s capital, Pristina) and 
ground force assets (e.g., Serbian army barracks and supply depots).90 Unfortunately, these initial 
planned attacks did not deter the Serbs, who pressed ahead with their plan to drive as many 
ethnic Albanians as possible out of Kosovo to expose the Kosovo Liberation Army, which was 
believed to be intermingled with the civilian population. 

When it became clear that the air campaign would not end quickly, General Clark pressed his 
staff to identify 5,000 additional target candidates (although he later lowered the goal to 2,000 
target candidates when his staff convinced him the larger figure was unrealistic). Targeteers 
scrambled to come up with additional candidates to meet the goal, which proved to be a 
considerable challenge. One analyst labeled the NATO alliance’s target development a 
“mechanical process of meticulous selection with little true military justification.” 91 

The NATO campaign ultimately succeeded, but many analysts subsequently contended that it 
was the political pressure created by the bombing campaign rather than the destruction of any 
specific targets that had the most effect. As one analyst put it: “It was not what we bombed, but 
that we bombed.”92 

Lessons 

This case highlights the importance of effectiveness in intelligence analysis. In this case, the 
operation was successful, but the scramble to find targets in OAF demonstrated to many that 
strategic planning processes for deliberate targeting needed to be improved. And later conflicts 
continue to indicate room for improvement. Operation Odyssey Dawn (2011) revealed that some 
of the same problems from the earlier era persisted: 

Specifically, since the late 1990s, the combination of force restructuring, 
operational needs in a counterinsurgency environment, and service and DoD 
efficiency initiatives contributed to the atrophy of targeting capabilities across the 
board . . . . During that same time period, technological advances and new 
platforms, sensors, and munitions similarly transformed targeting requirements—
the classic targeting folders and weaponeering process had changed into 
something both digital and dynamic. The result, underscored by experiences in 
Odyssey Dawn (the operation to enforce United Nations Security Council 

 
89 Lambeth, 2001, p. 199. 
90 Lambeth, 2001, p. 22. 
91 William M. Arkin, “Smart Bombs, Dumb Targeting?” Bulletin of the Atomic Scientists, Vol. 56, No. 3, May/June 
2000, p. 48. 
92 Lambeth, 2001, p. 86. 
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resolution 1973 in Libya), is that Air Force targeting now lacks sufficient 
capacity to remain effective within the context of future planning scenarios.93 

Currently, efforts are underway in the 363rd ISRW to integrate TSA into the 72-hour air 
tasking order cycle. A key principle is the recognition that targets are not idle when attacked. The 
adversary makes combat repairs, opens new facilities to recover losses, and employs creative 
workarounds. Furthermore, tactical, operational, and strategic objectives of friendly forces might 
shift as the conflict unfolds. As a result, there is a need for continued TSA throughout active 
combat operations to update deliberate targeting priorities as the conflict progresses. 

TSA analysts spend significant time tagging images with basic information today, which 
adds to the laborious nature of that process. This is necessary for two reasons: first, because the 
annotated image product sometimes cannot be located without the tag, and second, because the 
tagging during the initial PED process may have been efficient but was not complete. Although 
the requested EEIs accompanying the original tasking order may have been satisfied, not 
everything that could be gleaned from the image was recorded. Just as PED is but one part of the 
F2T2EA chain, it can also be the first stage in a longer analysis process. The effectiveness of 
earlier phases of analysis has implications for subsequent steps. As discussed in Volume 1, 
AI/ML (along with other, less sophisticated automation methods) may be able to improve AF 
DCGS operational effectiveness, both by providing data-management options to make 
information more available and by performing some of the more routine tasks that prevent 
analysts from focusing on strategic intelligence problems. 

Airman Resiliency 

Background 

A previous PAF study that surveyed AF DCGS analysts confirmed two distinct types of 
mental workload concerns: the tedious, “mind-numbing” tasks associated with low-tempo 
operations—often from watching video where nothing was happening—and, at the other end of 
the spectrum, frantic efforts associated with high-tempo operations.94 This matches well the 
long-standing recognition in the organizational psychology literature that both underload and 
overload can be drivers of occupational burnout.95 A separate 2012 study found that AF DCGS 
analysts reported unusually high levels of stress and exhaustion compared with nonintelligence 

 
93 Kimminau, 2012, pp. 124–125. 
94 Menthe et al., 2015b. 
95 Underload is defined as “tedium and monotony,” whereas overload is “too many demands with too few 
resources” (Christina Maslach, Wilmar B. Schaufeli, and Michael P. Leiter, “Job Burnout,” Annual Review of 
Psychology, Vol. 52, February 2001, pp. 405, 414). 
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analysts.96 As yet another study explained, the environment at the time was stressful because of 
the effects of the near-continuous surge conditions under which the AF DCGS had been 
operating: 

The most problematic stressors among DCGS intelligence operators continue to 
be operational in nature, such as high workload and not enough manpower to 
accomplish all tasks, organizational conflict associated with being assigned 
multiple tasks competing for time, interpersonal conflict, and shift work.97 

These stressors incur costs to the organization and interfere with training. As Gen Herbert J. 
Carlisle put it, “One of the challenges we’re having with respect to the RPA enterprise is we 
can’t get breathing room to do anything.” He explained that crews “don’t get to practice their 
entire mission sets” and were doing “zero continuation training because they’re all engaged in 
the fight.”98 And the concerns go beyond work-related issues. They can also threaten mental 
health. As one study found: 

Enlisted RPA intelligence specialists displayed significantly higher incidence 
rates for substance abuse/dependence, family circumstance problems, and 
maltreatment related mental health categories, and for all mental health outcomes 
combined . . . [they] also displayed statistically higher incidence rates for life 
circumstance problems and posttraumatic stress disorder. . . . Military 
policymakers and clinicians should recognize that RPA intelligence personnel 
have increased mental health risk while performing their duties.99 

Case Study 

To address these growing concerns, in 2015, the Air Force began embedding small groups of 
medical and psychological professionals at several AF DCGS sites.100 These Airman Resiliency 
Teams (ARTs) provide a variety of mental health services, as well as ways to improve the work 
environment. The ARTs are credited with helping bring significant reductions in the suicide rate. 
The Air Force Medical Service reported: 

Integration of the 480th ISR Wing ART took place in 2015. The embedded teams 
have made a huge difference in the physical and mental wellbeing of its Airmen. 

 
96 For example, 29 percent of intelligence analysts reported serious exhaustion at least once per week, versus only  
6 percent in other fields (John K. Langley, Occupational Burnout and Retention of Air Force Distributed Common 
Ground System [DCGS] Intelligence Personnel, dissertation, Santa Monica, Calif.: Pardee RAND Graduate School, 
2012). 
97 Lillian Prince, Wayne L. Chappelle, Kent D. McDonald, Tanya Goodman, Sara Cowper, and William Thompson, 
“Reassessment of Psychological Distress and Post-Traumatic Stress Disorder in United States Air Force Distributed 
Common Ground System Operators,” Military Medicine, Vol. 180, No. 3 Supplement, March 2015, p. 176. 
98 Gen Herbert “Hawk” Carlisle, former ACC commander, quoted in Mark Pomerleau, 2015. 
99 Kris Anthony Ostrowski, “Psychological Health Outcomes Within USAF Remotely Piloted Aircraft Support 
Career Fields,” dissertation, Daytona Beach, Fla.: Embry-Riddle Aeronautical University, June 2016, p. iv.  
100 Peter Holstein, “Airmen Resiliency Team Provides 480th ISR Wing with Medical, Psychological and Spiritual 
Care,” Air Force Medical Service webpage, Surgeon General Office of Public Affairs, May 24, 2017. 
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Long considered a career field with higher risk of suicide, 2016 saw zero suicides 
for the unit.101 

In addition, the ARTs looked to work-related improvements. They found that AF DCGS 
airmen were becoming “more tired, easily distracted and less effective toward the end of shifts 
lasting longer than eight hours.”102 A supporting study found that retention among analysts was 
also a concern because shifts were often 14 hours long: “Work schedule was the factor most 
listed as affecting the decision to re-enlist.”103 

Implementing the recommended change to shorter shifts had many measurable benefits. In 
terms of quality of life, airmen reported improvements on every measure, including not feeling 
exhausted.104 There were also product improvements in terms of effectiveness. The error rate for 
high-altitude imagery and FMV in their primary area of responsibility was 12 percent and 8 
percent lower, respectively, and airmen showed “improved initiative” and were less likely to fail 
to use additional resources in their work.105 

Lessons 

ARTs show the importance of protecting human capital in the AF DCGS. Caring for human 
capital is not just good for the humans but also is good for the organization. Therefore, it is 
important to be mindful of how automation of analytic processes within the AF DCGS will affect 
the texture of the work done and whether that will lead to underload or overload. Volume 1 
suggests that AI/ML, by taking over the more tedious tasks, can free analysts for jobs that are 
both more professionally satisfying and make better use of human capabilities. At the same time, 
the AF DCGS should be careful to introduce new tools in a way that helps analysts rather than 
creates new burdens, as discussed in Chapter 8 of this report. 

Humanitarian Assistance and Disaster Relief 

Background  

Periodically, the Air Force is called on to conduct or support humanitarian assistance and 
disaster response (HA/DR) operations, typically in response to large-scale events that overwhelm 
local authorities. In these situations, time is often an enemy: Lives may still be in danger as a 

 
101 Holstein, 2017. 
102 Holstein, 2017. 
103 Although shifts were nominally 12 hours long, they were actually closer to 14 hours, including the briefings and 
changeover tasks on either end (548th Operational Support Squadron, Sustainable DCGS: DGS-2 Pilot Study 18 
Mar–25 Jun 2015, Beale Air Force Base, Calif., July 2015, p. 9). 
104 Jeremy Didier, “Sustainable DCGS: DGS-2 Pilot Study 18 Mar – 25 Jun 2015,” 548th Operational Support 
Squadron, July 2015. 
105 Didier, 2015. 
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result of the direct effects of the disaster, and more may perish if the required food, water, 
medicine, and other resources cannot be delivered in a timely manner. Understanding the 
situation on the ground is critical to delivering the right aid to the right place at the right time.  

In some situations, the Air Force ISR community is asked to provide some of that situational 
understanding. The greatest challenge here often lies in the dissemination of information. The 
AF DCGS has provided exploitation for HA/DR operations via special products cleared for 
release.106 But the Air Force ISR community was built and optimized to provide operational 
warfighters with the information they need to succeed against a foreign adversary, and 
commanders typically have the clearances required to see this information.107 In a HA/DR 
situation, however, decisionmakers might not have the right clearances—indeed, in situations on 
foreign soil, the most-important decisionmakers might not even be U.S. citizens.108 

For U.S. operations, the Air Force ISR community must work through intelligence oversight 
rules to ensure that appropriate Proper Use Memorandums are in place. In both domestic and 
foreign situations, the information must be made releasable to appropriate authorities, either 
through declassification or working through the Foreign Disclosure process. All of this adds 
time, which can be detrimental to operational success.  

Case Study 

The Air Force played a vital role in the disaster response to Hurricane Katrina. A total of 13 
airborne ISR assets were employed by six different government agencies—Air Force, ANG, 
Civil Air Patrol, Navy, Defense Intelligence Agency, and Customs and Border Protection—to 
assess damage and facilitate relief and recovery. In total, these assets flew 361 sorties, during 
which they collected 1,128 images and recorded 117 hours of FMV. These data were analyzed 
across six exploitation nodes and disseminated to 22 customers throughout the affected area.109  

Working through intelligence oversight issues and “sanitizing” the data to produce an 
unclassified product was necessary but time consuming. In an interview a year after the disaster, 
the Assistant Secretary of Defense for Homeland Defense, Paul McHale, noted that the 
organizations involved often had different communications equipment, security protocols, and 
standards. Although McHale was confident that top-level decisionmakers were sufficiently 
connected, he felt that rapid deployment and emergency assistance capabilities still need to be 
shored up. He concluded: 

 
106 U.S. Air Force, 2015b. 
107 This is not always true for all types of intelligence, unfortunately, but those issues go beyond the scope of this 
project. 
108 The information also must be promptly transmitted to any ground units directly assisting the affected population. 
109 U.S. Air Force, “Air Force Support to Hurricane Katrina/Rita Relief Operations: By the Numbers,” Washington, 
D.C.: Headquarters U.S. Air Force, October 2005, pp. 13–14. 
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We in DoD have a duty to work with our interagency partners in order to ensure 
that civilian capabilities are properly planned, effectively resourced, and are well 
coordinated with DoD to ensure that once we get downrange, our national 
response will achieve unity of effort.110  

The U.S. disaster response to the Great East Japan Earthquake of March 2011, Operation 
Tomodachi, offers another example of how ISR assets can be effectively used in HA/DR but 
further underscores the longer timelines that can arise when attempting to disseminate ISR 
products to foreign decisionmakers. In this case, all four services, along with numerous 
governmental agencies, such as the U.S. Department of Energy (DoE) and the Nuclear 
Regulatory Commission, worked with Japanese governmental and nongovernmental agencies in 
this massive effort. At the peak of Operation Tomodachi, the United States had deployed 
approximately 24,000 personnel, 189 aircraft, and 24 ships to the affected area. Japan also 
deployed more than 100,000 disaster relief personnel, 500 fixed-wing and rotary aircraft, and 60 
ships.111 

ISR for the effort was primarily provided by Air Force RQ-4 Global Hawks and U-2s. Global 
Hawks were used to search for and photograph survivors, living areas, and infrastructure to 
assess damage, identify usable roads, and help Japanese officials decide what areas need to be 
prioritized. Global Hawks were also used to monitor heat levels within the Fukushima Daiichi’s 
reactors.112 The Air Force also employed U-2s to capture broad-area images of affected areas, 
and the 9th Intelligence Squadron at DGS-2113 analyzed the photographs.114  

The challenge was to ensure that all appropriate decisionmakers were receiving the right ISR 
information in a timely manner. Since the United States was playing a supporting role during the 
disaster, ISR products needed to be communicated to Japanese rather than U.S. government or 
military decisionmakers. Approximately ten days passed between the initial request and official 
approval of new information-sharing protocols. This was actually relatively rapid for this kind of 
dissemination: Situations involving authorization to share intelligence data in a way not 
previously done can take anywhere from one to four months. Although this timeline was 
sufficient for Operation Tomodachi, it illustrates the difficulties that can arise. 
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Lessons 

These HA/DR examples highlight the importance of agility in the analytic process: the ability 
to quickly change processes to support different types of operations and to work with different 
partners. The inherent unpredictability of disasters also highlights the need for agility. The 
disclosure process for classified information is, and must be, deliberate and thorough because 
intelligence sources and methods can be highly sensitive. Moreover, establishing a new 
procedure for disseminating data often requires coordination from many top-level 
decisionmakers not only in DoD but at the U.S. Department of State and other agencies. But if 
these processes cannot be completed in a timely manner, they will not be helpful to the relief 
effort. 

Although future platforms and collection technologies may provide the United States with a 
better understanding of disaster-affected areas, as the rate of data collection grows, so too does 
the risk that it will overwhelm not only the PED process but also intelligence oversight, 
declassification, and the foreign disclosure processes. 

Recently, some steps have been taken to prepare for potential information-sharing situations. 
The 480th ISRW has worked with the CCMDs to create templates for every type of data and 
classification they currently process, and knowledgeable individuals have indicated their hope 
that this could enable timelines to improve from days to hours, if fully implemented. If 
preapprovals can be established or disclosure decisions can be safely pushed to lower levels for 
decisionmaking, this should allow for more-rapid dissemination in an emergency.  

Automation of analytic processes may also speed the delivery of information once these 
approvals and decisions have been made, but it is worth noting that, in these HA/DR operations, 
trained imagery analysts were able to assist because they could quickly learn how to recognize 
new kinds of activity and objects in a new geographical area. As we discuss in Chapter 4, it is 
unlikely that AI/ML applications will be so flexible: It is difficult to extend their performance 
outside their training data set. This is one reason why we isolate “agility” as its own challenge—
to ensure that this important character is not lost in the drive to streamline an organization that 
has, over the past 15 years, matured largely in the context of COIN/CT operations. 
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4. Artificial Intelligence and Machine Learning: A Primer for AF 
DCGS Analysts 

The AF DCGS presently finds itself at a unique intersection of technical need and technical 
opportunity. The need is evident. Some of the computer systems still in use today at the AF 
DCGS are decades old,115 presenting today’s young analysts with unfamiliar interfaces and 
requiring data to be hand-jammed from one system to another. Modern analysis tools, such as 
ArcGIS Pro, cannot run on these old systems.116 The open architecture DCGS program, which 
includes a long-overdue hardware and software refresh using Intel x86 and Microsoft Windows 
10, is currently being tested and fielded across the AF DCGS enterprise, but, without additional 
funding, the rollout is not expected to be complete until 2021. As of August 2018, persistent data 
access and system integration problems prevented adoption at any DGS site.117 

Meanwhile, over the last decade, the fields of AI/ML have experienced a renaissance as new 
life has been breathed into old algorithms—notably deep learning—and computing power has 
grown as its cost has decreased.118 This explosive growth in AI/ML has made advances toward 
addressing many analysis and categorization problems, such as machine vision and automated 
translation, that have obvious applications to the AF DCGS. Thus, the AF DCGS is ripe for 
technical overhaul at a time when useful AI/ML algorithms are becoming available for 
integration into the workflow and when moderation of the high “surge” conditions that were the 
norm during OEF and OIF affords the enterprise space for reflection and change.119  

The Air Force is already moving in this direction: 

“What we’re trying to do is set the conditions to build an AI-ready culture,” [Lt 
Gen John N. T. Shanahan] said. “It’s not easy. This is uncomfortable. It’s a very 
different way of thinking about problems than we’ve used in the past. But the 
attitude is out there. The younger people are more receptive to this and they’re 

 
115 The authors saw some SUN workstations that were literally in use when we first examined this issue in 2009—
when we first recommended new hardware.  
116 Environmental Systems Research Institute, “ArcGIS Pro 2.2 System Requirements,” webpage, undated. 
117 Among the issues cited were slow access times for imagery data, limited communications network access, and 
frequent crashes. 
118 This has been widely observed. See, for example, Roger Parloff, “Why Deep Learning Is Suddenly Changing 
Your Life,” Fortune, September 28, 2016. 
119 These surge conditions raised the maximum mission hours to 246 per month for a PED crewperson versus 
steady-state operations of 150 hours. See Table 4.1 in Air Force Intelligence, Surveillance, and Reconnaissance 
Agency Instruction 14-153, 2014. 
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ready to jump on board yesterday. They’ve been asking us: What took you so 
long?”120 

The purpose of this short tutorial on AI/ML concepts is to empower the reader to ask the 
right questions about these methods, understand the challenges involved with their 
implementation, and alert them to potential vulnerabilities. We believe that this level of 
knowledge is important to make informed investment decisions regarding AI/ML and to 
understand the recommendations presented in Volume 1.  

Historical Overview 
Today, AI can loosely be defined as the use of computers to carry out tasks that previously 

required human intelligence, but the term has evolved considerably over the field’s six-decade 
history. AI pioneer Marvin Minsky defined it in 1968 as “the science of making machines do 
things that would require intelligence if done by men.”121 Early AI researchers generally framed 
their goals in terms of replicating human cognition, as the predominant view was that machines 
could only evince intelligent behavior if they were also intelligent. But once computers began to 
succeed at such tasks, humans tended to decide that these tasks did not demand cognition after 
all. John McCarthy, credited by some with coining the term AI,122 dubbed this the AI effect: “As 
soon as it works,” he complained, “no one calls it AI anymore.”123  

In time, AI researchers increasingly sought to define their field in a more general way, 
sidestepping thorny philosophical problems about the nature of the human mind. A particularly 
influential framing held that the goal of AI instead should be merely the design of “rational 
agents,” things that act, “so as to achieve the best outcome or, when there is uncertainty, the best 
expected outcome.”124 

ML is not the same as AI, although they are often conflated in contemporary discourse. The 
term machine learning originated from AI—Arthur Samuel invented it to describe his landmark 
1959 checkers program.125 But researchers at the time were often less than eager to be associated 
with AI; some saw it as a controversial research program seeking to create “machines with 
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minds, in the full and literal sense.”126 The kind of statistical methods that came to dominate ML 
were in the comparatively modest field then called “pattern recognition.”127 

In recent years, however, the term ML has increasingly subsumed both the label and the field 
of AI. This conflation obscures the fact that many ML applications, such as logistic regressions 
and clustering algorithms, are not really “artificial intelligence,” even under the most expansive 
definitions of the field. This misconception stems in part from the fact that learning techniques 
have come to predominate AI research, including in such uses as theorem-proving and machine-
language translation that early AI researchers believed had nothing to do with learning. 

The brisk progress in AI research over the past decade stems substantially from the sudden 
success of a subfield of ML known as deep learning (see discussion later in this chapter). 
Although deep learning was first conceptualized in the 1980s, it was too computationally 
intensive to be practical at that time. In the 2000s, however, deep learning began showing some 
promise in research settings and rapidly eclipsed previous techniques for many challenging 
AI/ML tasks. In the space of a few years in the mid-2010s, deep learning rendered prior 
approaches to machine vision and automated speech recognition obsolete.128 In conjunction with 
reinforcement learning—another existing technique whose results had previously been 
underwhelming—deep learning also swept the field of game-playing, achieving superhuman 
performance at Go and other games.129 It is important to note, however, that deep learning is not 
usually sufficient in and of itself in performing most cognitive tasks; it must be paired with other 
processes and methods. 

Artificial general intelligence (AGI) is a still-hypothetical technology that would endow 
machines with some equivalent of humans’ flexible cognitive abilities. There is no generally 
accepted definition of this term, which is used by different authors to mean anything from 
systems that are merely more adaptable to novel problems than today’s “narrow” AI to machines 
that duplicate or exceed human performance on all cognitive tasks. Experts also do not concur 
about the kind of technology that would be used to implement AGI. Most researchers believe 
that simply scaling up current techniques will prove insufficient and that fundamental 
breakthroughs will be required. The applications we discuss in this report do not require AGI, 
because AGI remains abstract and theoretical, and less-powerful measures should suffice. 
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Glossary  
Table 4.1 presents some common AI/ML terms that we use in the remainder of this chapter. 

They are shown in an order such that successive terms build on the previous ones. This is, of 
course, just a sample of a rich subject. We discuss these in more detail when we introduce these 
concepts in the AI/ML methods section. 
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Table 4.1. Glossary of AI/ML Terms 

Term Definition 
Supervised learning ML that learns to approximate a function by mapping between provided input-

output pairs (i.e., labeled training data) 

Unsupervised learning ML that attempts to learn a function describing the structure of unlabeled training 
data 

Reinforcement learning ML that seeks to learn to maximize an expected reward or utility function by 
interacting with an environment over time 

Neural network A family of ML techniques that are loosely inspired by biological brains (also 
commonly called artificial neural networks to distinguish them from actual 
networks of linked biological neurons) 

Node The fundamental building block of a neural network, sometimes referred to as an 
artificial neuron or also a unit 

Layer The intermediate structure of a neural network (nodes are organized into layers 
that accept input, transform it, and pass it along; traditional neural networks may 
have an input layer, an output layer, and one or more hidden layers in between) 

Depth The number of layers in a neural network 

Deep learning ML using neural networks with more than one hidden layer 

Feedforward neural network A type of neural network in which values are passed from the input layer, through 
hidden layers, to the output layer, and are subject to transformation at each layer 

Gradient descent A common optimization method used to train neural networks. At each step, the 
parameters of the model are adjusted a small amount in the direction of greatest 
decrease in the error function. This is akin to charting a trajectory down a 
mountain by always moving in the direction of the steepest descent. Note that 
the resulting path may not be shortest and may not converge to the global 
minimum.  

Backpropagation A widespread method that uses the chain-rule from Calculus to calculate the 
gradient of a neural network’s error function with respect to its weight 
parameters. Often used in conjunction with gradient descent to train neural 
networks 

Convolutional neural network A type of feedforward neural network that was originally developed for 
processing images that uses specially learned convolutions or “filters” to exploit 
certain local structures in data 

Recurrent neural network A family of neural networks structured to process inputs of arbitrary length 

Autoencoder An unsupervised method primarily used for noise filtering 

Random forest A different kind of supervised ML technique that uses an ensemble of decision 
trees to classify an input. Random forests have several advantages over neural 
networks, including being relatively human-comprehensible and requiring 
relatively little tuning, but usually are only used as classifiers on relatively low-
dimensional data. 

Bayesian learning A framework for ML in which one starts with an initial guess, or "prior" for the 
probability distribution in question, and then the estimate for that distribution is 
updated according to Bayes' theorem as new observations are made. 

Hidden Markov Model A statistical model in which the system being modeled is assumed to be a 
Markov process (i.e., the probability of a future state depends only on the 
immediately prior state), but some or all of these current and future states may 
be unobserved (“hidden”) 
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Current Status 
AI and ML are broad, diverse fields encompassing a variety of techniques, many of which 

may be applicable to basic analytic tasks. Today’s ML algorithms are very powerful “function 
approximators,” or systems that are trained to map input data to output data and then predict 
what outputs would be derived from different (untested) input data. There are two main flavors 
of ML today: supervised and unsupervised. The former must learn from labeled training data, 
while the latter seeks to learn from training data without labels. A third flavor, reinforcement 
learning, lies somewhere between the two: Instead of learning from explicit labels, the algorithm 
attempts to maximize some reward signal by interacting with its environment. We discuss 
reinforcement learning in more detail later in this chapter. 

ML has achieved remarkable empirical results in solving certain types of problems, including 
machine vision, translation, and speech recognition. However, despite demonstrated successes, 
difficulties remain. Many ML algorithms require large amounts of training data, which often 
must be labeled by humans or acquired in some other costly fashion. Often, cleaning or 
formatting real-world data to create a usable training set makes up a significant portion of the 
work of building a practical ML application. For example, Project Maven works with existing 
AI/ML algorithms but requires a training set of millions of hand-labeled images.130 

Another challenge that persists even with state-of-the-art methods is that of “overfitting” the 
training data—meaning that the algorithm is exquisitely tuned to the data on which it was trained 
but generalizes poorly to real-world data beyond it. Although we ideally would have ML 
techniques that could be applied to arbitrary problems without additional tinkering, this goal 
remains a long way off, if it is possible at all. Most current ML methods require many different 
parameters to be finely tuned, and finding the right combination of parameters to get the 
algorithm to work can be forbiddingly difficult.  

Future Development 
Compared with other aspects of computing, such as the growth in the density of integrated 

circuits, for which Moore’s Law proved accurate for 50 years,131 the future development of AI 
has been notoriously difficult to predict. Many early AI researchers mistakenly thought that 
“human-level” AI would be created well before the start of the 21st century. Then the pendulum 

 
130 The ML algorithm itself has been described as just “75 lines of Python code” on top of Google’s standard 
TensorFlow package, but it is estimated that the project will need to generate at least 100,000 individually labeled 
images for each of the 38 different object types it hopes to recognize (Cheryl Pellerin, “Project Maven to Deploy 
Computer Algorithms to War Zone by Year’s End,” press release, Washington, D.C.: U.S. Department of Defense, 
July 21, 2017; Lynette M. Role, “New Artificial Intelligence Technology Assists Air Commandos with Decision-
Making,” press release, Hurlburt Field, Fla.: Air Force Special Operations Command Public Affairs, September 13, 
2017). 
131 Max Roser and Hannah Ritchie, “Technological Progress,” Our World in Data webpage, 2013. 
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swung the other way and algorithms, such as deep learning and reinforcement learning, were 
dismissed as failures by much of the research community in the 1990s and early 2000s. As 
recently as ten years ago, the imminent conquest of AI and ML by deep learning was far from 
obvious, even to most leading researchers.  

Still, surveys of experts vary enormously in this area. For example, a 2016 survey on when 
AI would be able to succeed at certain tasks reported estimates that varied wildly between ten 
and 50 years for complex tasks, such as writing a novel. Even for seemingly simple tasks, such 
as folding laundry, expert estimates varied by more than ten years.132 It is therefore extremely 
difficult to predict the future state of the field, and it is not given that future breakthroughs will 
build on currently dominant techniques. As a consequence, it is difficult to predict when AI/ML 
techniques will be able to perform the more complex analytic tasks, particularly those that 
require a degree of understanding or common sense, as opposed to mere statistical pattern-
matching. 

Current techniques either rely on statistical inference or can reason using a provided model 
but do not “understand” in the sense needed for many tasks. For example, it would be desirable 
to have scene-analysis systems that are intelligent enough to anticipate why a particular 
confluence of possibly mundane observations was significant and then alert human analysts. 
Current techniques, however, would generalize poorly for such purposes unless the training set 
anticipated it. Problems requiring this sort of “human-like” or “general” intelligence are 
informally referred to as “AI-complete” among researchers.133 

In contrast to the hazy trajectory of AI and ML research, it is possible to anticipate 
commercialization of existing technologies with greater confidence. Major technology firms are 
aggressively seeking ways to scale up recent research findings to address larger data sets. These 
efforts include both developing larger training sets, such as labeled images and multilingual 
texts, and developing custom hardware for training and executing ML models. Improvements in 
software engineering can provide similar speedups. As these advances are commercialized, 
current ML technology will be able to address more and larger real-world tasks even without 
additional breakthroughs in ML algorithms or architectures. Although the requisite information 

 
132 Estimates by AI researchers for what they evidently deemed to be the most complex task, automating AI 
research itself, varied by more than a century (see Katja Grace, John Salvatier, Allan Dafoe, Baobao Zhang, and 
Owain Evans, “When Will AI Exceed Human Performance? Evidence from AI Experts,” Journal of Artificial 
Intelligence Research, Vol. 62, 2018; see discussion in AI Impacts, “2016 Expert Survey on Progress in AI: Narrow 
Tasks,” webpage, undated). 
133 The term AI complete was coined in analogy to “NP complete” from mathematics. An NP complete computing 
problem is at least as difficult as any other computing problem for which an answer can be checked in polynomial 
time. If there were a method to solve any NP complete problem in polynomial time (although no such method is yet 
known), that method could be used to solve any computing problem in polynomial time, as long as the problem 
permits answers to be checked in polynomial time. By analogy, an AI complete problem is difficult enough that, if 
AI technology could solve it, then that same technology could be adapted to do anything else that human 
intelligence can do (Roman Yampolskiy, “Turing Test as a Defining Feature of AI-Completeness,” in Xin-She 
Yang, ed., Artificial Intelligence, Evolutionary Computing and Metaheuristics, Berlin: Springer-Verlag, 2012). 
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to analyze the resultant performance boost from hardware is often proprietary, it should be 
calculable in a way that improvements from additional data or better pretrained models are not. 
The extent to which this process will enhance individual applications is necessarily specific to 
that task.  

We now take a closer look at several commonly used AI/ML methods and algorithms.  

Artificial Intelligence/Machine Learning Methods 

Neural Networks 

Artificial neural networks are one kind of ML and are loosely inspired by the way that 
neurons are linked together in biological brains. These networks map inputs to outputs and are 
trained to build maps through various learning processes. The inputs and outputs to a neural 
network usually take different forms. For instance, a neural network that is trained to recognize 
bananas might accept an image as its input and might return as its output a number representing 
its confidence that the image indeed depicts a banana. During the training phase, a neural 
network would initially output random numbers but would learn gradually to distinguish the 
images that contain bananas, reducing the error rate after many tries. If trained well and supplied 
with sufficient input data, neural networks can be effective. They can even be predictive. For 
instance, neural networks used in today’s facial-recognition systems can estimate what a known 
face would look like from a previously unseen angle. 

Neural networks are structured in layers, as shown in Figure 4.1. In most structures, each 
layer accepts an input from the previous layer, transforms it, and passes its output to the next 
layer. Networks that follow this structure are also called feedforward networks. The output from 
each node is usually a weighted average of the inputs, normalized to within some standard range 
(such as between 0 and 1). The process of training a neural network is essentially the process of 
determining these weights.  

Most neural networks will have at least an input and an output layer. The depth of a neural 
network refers to the number of “hidden” layers between these two layers. A neural network with 
one or more hidden layers is said to allow for deep learning. The way in which these layers are 
wired together is one of the main distinctions among different types of neural networks. Neural 
networks may contain many layers with a large number of nodes in each. 
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Figure 4.1. Layered Structure of Neural Networks 

 

Despite the current excitement around deep learning, neural networks are often difficult to 
implement in practice. Applying neural networks to real-world problems typically requires 
considerable trial and error on the part of the developer. Neural networks are also comparatively 
resource-intensive, in terms of both computational resources and training data, and these 
requirements can increase rapidly with the depth of the network. 

Furthermore, neural networks are “black boxes” in the sense that their behavior is difficult to 
interpret. For example, if an algorithm misclassifies something as a banana, it is often very 
difficult to find out why. Thus, it is preferable to use simpler methods where feasible. Older ML 
techniques, such as random forests, need less tinkering, are easier for humans to understand, and 
give good results in many cases.134 But for many desired applications, such as machine vision, 
deep learning is the best (and perhaps only) currently viable technique. 

Decades of research have resulted in a wide variety of different types of neural networks, 
although only a subset of these are in widespread commercial use. In current practice, it is 
unusual for a single type of neural network to be employed in isolation in an end-user 
application. Instead, they are combined with other kinds of neural networks and/or nonneural 
network components into larger architectures. 

We review different types of neural networks and related methods in the next sections.  

 
134 Random forests are an ensemble-learning technique using decision trees. Because of the distribution of models 
learned by the component decision trees, their errors tend to cancel each other out, resulting in an overall model that 
generalizes well to unseen cases. Although they are not suitable for such tasks as machine vision, random forests are 
relatively easy to use compared with neural networks. They have few parameters to tune and often “just work” when 
applied to an appropriate classification task. 



 54 

Fully Connected Neural Networks 

A neural network is considered fully connected if each node connects to every node in the 
previous layer and every node in the next layer. (The network shown in Figure 4.1 is fully 
connected.) The classic fully connected feedforward neural network was developed in the 1980s 
as an enhancement to the much-older perceptron.135 Perceptrons are two-layer neural networks 
that were originally implemented as custom hardware. In 1969, however, Minsky and Seymour 
Papert showed that the perceptron was theoretically incapable of learning many simple functions, 
effectively squelching interest in them until the mid-1980s.136 

At that time, researchers began to add hidden layers. Computational techniques, such as 
backpropagation and stochastic gradient descent, were breakthroughs in training these neural 
networks. Stochastic gradient descent uses a “hot-or-cold” response to measure how close an 
output is to the correct answer for a given example in the training set; backpropagation is a 
straightforward technique of working backward through the layers to adjust their weighting 
parameters so the next guess would be closer to the mark.137 Researchers proved that these 
deeper neural networks can, in theory, learn to approximate any continuous function given 
sufficient training examples.138 These techniques are the foundation of most neural networks 
today, and, even with the advent of deep learning techniques, fully connected neural networks 
are currently at the core of many technologies. 

However, because they are fully connected, their computational requirements grow 
substantially with the size of each layer. Some tasks grow exponentially.139 This is especially 
challenging for images, which can be very large. Furthermore, their inputs and outputs are fixed 
in size, which, consequently, makes such networks difficult to adapt to text, audio, or video 
formats where records very greatly in length. To address some of these limitations, researchers 
developed alternatives, such as convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), which are both discussed in the next sections. 

Given their widespread employment in industry and research applications, such as those 
using Google’s TensorFlow, fully connected neural networks are mature. The applications built 
using these techniques, however, need not be. 

 
135 David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams, “Learning Representations by Back-
Propagating Errors,” Nature, Vol. 323, October 9, 1986. 
136 Marvin Minsky and Seymour Papert, Perceptrons. An Introduction to Computational Geometry, Cambridge, 
Mass.: MIT Press, 1969. 
137 Of course, this method only works for problems where one can define being “close” to the right answer. Doing 
this for image recognition, for example, may require some thought when one is literally comparing images of apples 
to oranges. 
138 See, for example, Kurt Hornik, “Approximation Capabilities of Multilayer Feedforward Networks,” Neural 
Networks, Vol. 4, No. 2, 1991. 
139 Many heuristics and approximate methods are used, however, to keep these requirements down. 
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Convolutional Neural Networks 

CNNs are a derivative of classic feedforward neural networks that are designed to take 
advantage of local structure in data. These are not fully connected: Each node accepts input only 
from a subset of the previous layer. CNNs were originally developed to process images but have 
also been employed successfully for such tasks as machine-language translation and signal 
processing. As an alternative to previous machine-vision approaches that employed hand-
engineered visual features, CNNs can learn features automatically in an end-to-end fashion. They 
do this by employing layers that consist of volumes of neurons to represent such concepts as 
depth, height, and width. 

The power of convolutional networks lies in their ability to learn the convolutions from data 
using backpropagation, just like a fully connected network. Once trained, the CNN produces a 
“learned representation” that converts an input, such as an image, into a fixed-size vector. In 
typical applications, these learned representations are then used as input to a fully connected 
neural network.140 

CNNs have rapidly supplanted earlier methods in most machine-vision tasks.141 CNNs now 
often feature hundreds or even thousands of layers. A logical counterpart of the CNN is the 
deconvolutional neural network, which works on the same principles, only in reverse. For 
instance, a deconvolutional neural network can take a fixed-length representation vector and use 
it to produce an image. This technique is used to make deepfakes, which will be discussed later 
in this section. 

Training a high-quality CNN with a substantial training set can be a forbidding endeavor, but 
fortunately, a CNN can often be repurposed for a new application by simply retraining its last 
few layers. In machine-vision systems, the earlier layers of the CNN typically represent low-
level image features, such as edges and corners, that generalize well between use cases. High-
level features corresponding to different kinds of objects occur in late convolutional layers. 

Like all forms of deep learning, CNNs are very data hungry and can require large amounts of 
central processing unit time to train. Furthermore, CNNs are a supervised ML technique that 
require labeled training data. Moreover, they are still “black box” techniques with poor 
interpretability and do not allow for explicit transfer learning (i.e., the ability to transfer what has 
been learned from one data set to another easily). They can also be brittle and give incorrect or 
nonsensical outputs when presented with images that are dissimilar from those in their original 
training set. 

Because CNNs are employed for almost all state-of-the-art machine-vision tasks, including 
object and facial recognition, we consider them to be mature. 

 
140 Yoshua Bengio, Aaron Courville, and Pascal Vincent, “Representation Learning: A Review and New 
Perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 35, No. 8, August 2013. 
141 Krizhevsky, Sutskever, and Hinton, 2012. 
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Recurrent Neural Networks 

RNNs are a family of neural networks that are structured differently so they can process 
arbitrary-length sequences, such as audio, video, and radar data. Because input data often vary in 
size and length, RNNs are an essential part of the ML expert’s tool kit. 

Typical RNNs share characteristic features with feedforward networks, including the use of 
weights, activation functions, hidden layers, and backpropagation. The difference lies in the 
existence of additional connections that allow the propagation of information forward in time 
and the use of special activation functions that try to retain “memories” of important earlier 
inputs until they are needed. The presence of this “cycle” allows them to, in effect, execute a 
learned computer program with certain fixed parameters. In theory, RNNs can learn to mimic 
almost any computable function.142 RNNs are typically trained using backpropagation through 
time, which is like ordinary backpropagation, except that losses are propagated “back in time” 
through the unrolled network. 

The recurrent connections in RNNs can take various forms, as illustrated in the unrolled 
diagrams in Figure 4.2. A common arrangement is to have the activations function consider not 
just the weighted inputs but also the weighted outputs from the previous time step (A). A more 
powerful, albeit harder to train, arrangement has recurrent connections between the activations 
layer of each time step (B). Using the previous activations rather than the previous output as an 
input to the activations layer can preserve information that would otherwise be lost. When 
desired, RNNs can translate a sequence to a fixed-length vector representation (C). This fixed-
length vector can be used as an input to CNNs or other feedforward neural networks—for 
example, such an RNN could translate an English-language description into a vector that a 
deconvolutional network or generative adaptive network (discussed on the next page) would then 
use to generate an image. 

 
142 Hava T. Siegelmann and Eduardo D. Sontag, “On the Computational Power of Neural Nets,” in Proceedings of 
the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, Pa., 1992. 
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Figure 4.2. Recurrent Neural Networks 

 

SOURCE: RAND analysis. 

There are many kinds of RNNs, but a common component is long short-term memory 
(LSTMs) units, which were introduced by Jürgen Schmidhuber in 1997. LSTMs were invented 
to avoid the “catastrophic forgetting” problem that bedeviled early RNNs—the relevant earlier 
information was diluted as it was propagated forward in time, so it tended to be lost by the time it 
was needed by the subsequent nodes. The LSTM employs a memory cell that can store data to 
control how the networks unroll, enabling it to look forward or backward in the input sequence, 
depending on its previous inputs. The LSTM can be used in combination with other kinds of 
units within an RNN, and RNNs using it are commonly employed in systems employing other 
techniques, such as CNNs. 

RNNs are employed in state-of-the-art machine-language translation and speech-recognition 
systems. They are also used for text summarization and scene description (typically in 
conjunction with CNNs). RNNs can also be used as an attention mechanism to seek certain kinds 
of features in imagery, “steering” the system to where objects of interest are likely to be located. 
For example, the current version of the open-source Tesseract optical character-recognition 
library exploits LSTMs to detect where lines of text are located in the page.143 This same 

 
143 GitHub, “tesseract-ocr,” webpage, undated.  
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principle can be exploited for spatial and temporal features in other kinds of data, such as audio 
and video. 

Although they require less hand-engineering than previous techniques for applications, such 
as machine-language translation, RNNs are still challenging to design and train. Moreover, the 
types of RNNs needed would be supervised systems requiring extensive labeled training data, 
such as translation systems requiring bilingual texts for training. Although systems using RNNs 
can produce eerily convincing results, they are still “black box” techniques and can show 
brittleness when provided with unfamiliar inputs. This makes them difficult to validate and 
debug. 

Recurrent neural networks, such as LSTMs, are in widespread commercial use in industry.  

Autoencoders 

Autoencoders are neural networks that learn an effective, reduced-size internal representation 
of the input data that can be used to reconstruct it as faithfully as possible. One prominent 
example is the denoising autoencoder (DAE). As their name implies, DAEs can be employed as 
noise filters; when trained effectively, they learn to focus on preserving the “essential” features 
of the input. Deep autoencoders can even learn to make educated guesses about the signal hidden 
behind noise in the original.144 DAEs therefore have considerable utility for data processing and 
compression tasks. They could also be deployed on sensor platforms to compress data in an 
intelligent, adaptive way to make the most of available transmission bandwidth. 

As an unsupervised learning technique (in the sense that DAEs learn to reconstruct their 
training samples), they require less labeled training data. The network is trained using samples 
with added noise to teach it to distinguish the “true” signal. Despite the simplicity of this scheme, 
their effectiveness is still highly dependent on the choice of network architecture and training 
data. Like other kinds of neural networks, they are liable to be brittle in the face of inputs too far 
outside the training set. If DAEs are not trained on a data set that is similar to the real-world use 
case, they may generate an internal representation that is ill-equipped to capture unusual features 
in the environment. As a consequence, under some circumstances, they may filter out atypical 
and interesting features that are mischaracterized as “noise.” DAEs are widespread in 
commercial use in industry.  

Deep Reinforcement Learning 

Reinforcement learning aims to create agents that act in an environment to maximize some 
reward or utility function. This is distinct from supervised learning in that “correct” answers are 
never provided during the training process, only punishments and rewards. Although 
reinforcement learning predates deep learning, over the past few years, the combination of the 

 
144 Because of this capability, they can be used to generate “deepfakes,” albeit of lower quality than Generative 
Adversarial Networks—see the section on adversarial examples later in this chapter. 
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two has led to dramatic progress on certain tasks, particularly game playing. The most dramatic 
examples of this are DeepMind’s Alpha* agents (AlphaGo, AlphaGo Zero, and AlphaZero), 
along with its agents that learn to play Atari 2600 games from raw pixels.145 The application of 
reinforcement learning to help tune or design deep learning systems for other tasks is also an 
active area of research.146 

The idea of reinforcement learning is quite general, but the field’s most spectacular successes 
came when it was combined with deep neural networks, leading to so-called deep-reinforcement 
learning. Although deep-reinforcement learning is currently the state-of-the-art approach for 
game playing, the typical approach has some limitations that have hindered attempts to apply it 
to other tasks. It is extraordinarily sample-inefficient, requiring enormous amounts of experience 
merely to learn the nature of a task, much less to achieve superhuman performance. In some 
domains, such as games, this obstacle can be overcome by simulating play at high speed and in 
parallel. But for many domains where real-world input is needed, such as with robotics, low 
sample efficiency is a serious challenge. This is an area of intense research. 

Deep-reinforcement learning is currently technically challenging, even for talented AI 
researchers, and its relative technological immaturity may be a greater obstacle to adoption by 
the Air Force than for commercial users because of a low tolerance for error in certain 
applications. In a few years, however, research might advance to the point that it can contribute 
to the various AF DCGS processes.147 

The current technological maturity of deep-reinforcement learning depends on the type of 
system being considered and its application. Some game-playing systems, such as AlphaZero, 
are state-of-the-art but not yet commercialized. Google has announced that it is using DeepMind 
reinforcement learning to manage energy usage in its server farms. A particular challenge to 
assessing the technological maturity of reinforcement learning is that current excitement over the 
technology has resulted in a tendency to label systems that are really variants of supervised 
learning as “reinforcement learning.”  

Supporting Technologies 
Applying AI/ML to AF DCGS operations requires more than just algorithms: One must also 

manage the data to feed them and have the hardware sufficient to run them. This section offers a 
brief overview of some of these necessary technological enablers that support AI/ML. These 

 
145 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A. Rusu, Joel Veness, Marc G. Bellemare, Alex 
Graves, Martin Riedmiller, Andreas K. Fidjeland, Georg Ostrovski, Stig Petersen, Charles Beattie, Amir Sadik, 
Ioannis Antonoglou, Helen King, Dharshan Kumaran, Daan Wierstra, Shane Legg, and Demis Hassabis, “Human-
Level Control Through Deep Reinforcement Learning,” Nature, Vol. 518, No. 7540, February 25, 2015, p. 529. 
146 Barret Zoph and Quoc V. Le, “Neural Architecture Search with Reinforcement Learning,” talk presented at the 
2017 International Conference on Learning Representations, Toulon, France, 2017. 
147 This technique may also be applicable to the operation of ISR platforms (i.e., ability to conduct evasive 
maneuvers while out of contact with remote operators). 
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technologies, of course, also have significant benefits in terms of efficiency and effectiveness 
well beyond their ability to facilitate subsequent AI/ML introduction.  

Data Management and Storage 

Because AI/ML algorithms are data-intensive, their practical use depends on effective 
management of training data. Databases are needed to store intelligence data and findings in a 
convenient form so that analysts can query data and the databases can serve as training samples 
for ML algorithms.148 Mature database solutions exist for a wide variety of use cases. Large-
scale databases have been in widespread use for decades. Although relational databases founded 
on Structured Query Language (SQL) are the most common (e.g., MySQL and Microsoft 
Access), alternatives, such as graph databases and document databases, are widely employed for 
industrial purposes. Next-generation solutions are likely to be expensive and disruptive and need 
to be acquired with attention paid to cost-effectiveness, performance, and security. Enabling 
multilevel security and the appropriate compartmentalization of classified information is also a 
vital consideration. Not only does secure information need to be strongly encrypted, it also needs 
to be isolated on appropriately secure systems for policy compliance. 

Similarly, the Air Force needs a good solution to store the enormous amount of data it 
collects even before these data are sorted into a database. Although much ISR data today is 
stored in national databases, the AF DCGS will likely require a way to store its own raw data 
from ISR platforms for the purposes of training ML algorithms. Historically, tape has been used 
for large-scale storage solutions because it has been cheaper than solid-state drives (SSDs) or 
disks, but tapes must be warehoused and can be accessed only by physically retrieving the stored 
media. Most contemporary commercial applications have now moved to SSDs for improved 
performance, and, as prices continue to fall, the cost differential soon may be negligible.149 As 
with databases, the ultimate large-scale data-storage solution needs to be cost-effective and 
secure (whether via encryption, physical security, or both). 

Cloud storage and computing solutions are increasingly ubiquitous in the commercial sector. 
The AF DCGS will need to decide how to transition to large-scale cloud computing. One 
possibility is for DoD to develop in-house cloud computing capabilities, but this option may 
prove very expensive relative to its performance. Another option will be to work with 
commercial solutions that are tailored to its needs.  

Custom Hardware 

Even once the AF DCGS has determined the nature of its next-generation computer-
networking and data-storage solution (cloud or otherwise), there remains the issue of what type 

 
148 To date, this has been implemented with varying levels of success. 
149 See, for example, Andy Patrizio, “SSDs Get Bigger, While Prices Get Smaller,” Network World, May 22, 2018. 
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of chips will be harnessed, especially for ML. There has been a revolution in the past few years 
in the development of special computer chips designed for ML applications. We review two 
examples in the next two subsections. 

Neuromorphic Computing 

Neuromorphic computing aims to create computer hardware that works “like the brain,” or, 
in many cases, to train or evaluate deep neural networks efficiently. This is often essentially a 
marketing term. However, a major objective of most of these devices is to operate in a more 
energy-efficient way than equivalent central processing units and graphics processing units 
(GPUs). Neuromorphic components might eventually be used by the Air Force for training and 
executing neural networks, or they could be integrated into sensor platforms as a way of 
conserving bandwidth. Presently, however, these technologies are too diverse to make any 
general assessment about their maturity for these purposes.  

Tensor Processing Units 

Tensor processing units (TPUs) are custom computer hardware designed by Google for 
matrix operations, which form the basis of modern neural network implementations.150 These 
proprietary devices are fairly power hungry and are not currently sold to end users but rather are 
leased via the cloud. Such devices as TPUs make the training and evaluation of modern neural 
networks much faster than other kinds of hardware, including high-end GPUs. The increasing 
number of firms seeking to commercialize similar technologies offers hope that equivalent 
capabilities will soon be available, and the AF DCGS should have several options to choose from 
in the future. TPUs are already in use at Google’s data centers. 

Vulnerabilities 
As just discussed, AI/ML methods have many potential applications for Air Force 

intelligence. However, we should also be mindful that new technologies might come with new 
vulnerabilities. There is an increasing awareness that many ML algorithms can be “tricked” by 
what are commonly referred to as adversarial attacks.151  

There are different types of adversarial attacks. A common one is an input that is specifically 
designed to confuse an AI/ML model and cause it to produce incorrect results. Recent research 
has shown that current instantiations of machine-vision systems, such as object classifiers, are 
highly vulnerable to adversarial attacks. These are especially important in cases in which the 

 
150 Cade Metz, “Google Makes Its Special A.I. Chips Available to Others,” New York Times, February 12, 2018. 
151 RAND researchers are working on a growing body of work on this subject. For example, see Gavin S. Harnett, 
Andrew J. Lohn, and Alexander P. Sedlack, “Adversarial Examples for Cost-Sensitive Classifiers,” working paper 
presented at the 33rd Conference on Neural Information Processing System (NeurIPS 2019), Vancouver, Canada, 
December 13, 2019. 
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human eye cannot discern adversarial attacks, such as in the famous example shown in Figure 
4.3.152 In this figure, we see that a small amount of what appears to be random noise has been 
added to the picture. This extremely subtle distortion, invisible to the human eye, can fool the AI 
system into misclassifying the object: The algorithm has mistaken a panda for a gibbon (in other 
cases, a turtle has been mistaken for a gun153). This poses a major concern because adversaries 
can be expected to attempt such techniques to counter U.S. intelligence applications of machine 
vision.  

Figure 4.3. Tricking Machine Vision 

 

SOURCE: Goodfellow, Ian, Jonathon Shlens, and Christian Szegedy, “Explaining and Harnessing Adversarial 
Examples,” paper presented at the International Conference on Learning Representations 2015, May 7–9, 
2015, p. 3. 

Generally speaking, machine vision systems using CNNs are known to be vulnerable to 
adversarial examples. RNNs are also vulnerable to adversarial inputs, although work to date in 
this area is less mature. Although the most-discussed examples of such attacks were designed to 
confuse image classifiers into giving specific incorrect results, it is also possible to design inputs 
that are designed to lower the accuracy of the classifier without any particular intended 
outcome.154 Researchers have demonstrated empirically that adversarial examples have some 
counterintuitive qualities. Designing them requires relatively little access to the classifier, and 
they can work on multiple classifiers, particularly those that share architecture and/or training 
data. The common use of CNNs pretrained on public data sets increases these vulnerabilities, but 
it is not their sole cause. The recent demonstration of adversarial examples that confuse time-

 
152 Goodfellow, Shlens, and Szegedy, 2015. 
153 Abigail Beall, “Visual Trick Fools AI into Thinking a Turtle Is Really a Rifle,” New Scientist, December 3, 
2017. 
154 Justin Gilmer, Ryan P. Adams, Ian Goodfellow, David Andersen, and George E. Dahl, “Motivating the Rules of 
the Game for Adversarial Example Research,” arXiv preprint arXiv:1807.06732, July 20, 2018. 
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limited humans as well as machine-vision systems suggests that defense against adversarial 
inputs may be extremely difficult even for powerful future AI systems.155 

In a different type of adversarial attack, adversaries could defeat hidden Markov models, 
such as those used in speech recognition, by intentionally violating the assumptions of the 
underlying pronunciation and language models. For instance, speaking pig Latin in a peculiar 
accent could cause an otherwise well-performing model to output nonsense. Indeed, researchers 
have demonstrated adversarial attacks on speech-recognition systems.156 This even extends to 
more-advanced methods, such as deep-reinforcement learning.157 

Despite the amusing examples that we use to illustrate adversarial attacks, this represents a 
real problem for AI/ML-based analysis. Removing the human analyst from the loop entirely 
would leave the system exposed to adversarial attacks of this kind. The Air Force will need to 
consider active defenses to adversarial attacks in its ML implementations from the outset of 
development and going forward. Although there is disagreement in the field about how well 
researchers will be able to harden their algorithms against these attacks, anyone using ML 
algorithms should be aware of the variety and effectiveness of existing adversarial attacks and 
keep tabs on how they evolve. 
  

 
155 Gamaleldin Elsayed, Shreya Shankar, Brian Cheung, Nicolas Papernot, Alex Kurakin, Ian Goodfellow, and 
Jascha Sohl-Dickstein, “Adversarial Examples That Fool Both Computer Vision and Time-Limited Humans,” paper 
presented at the 32nd Conference on Neural Information Processing Systems, Montréal, Canada, December 4, 2018. 
156 Nicholas Carlini and David Wagner, “Audio Adversarial Examples: Targeted Attacks on Speech-to-Text,” 
presented at the 39th IEEE Symposium on Security and Privacy, San Francisco, Calif., May 24, 2018. 
157 Sandy Huang, Nicolas Papernot, Ian Goodfellow, Yan Duan, and Pieter Abbeel, “Adversarial Attacks on Neural 
Network Policies,” workshop paper presented at the Fifth International Conference on Learning Representations, 
Toulon, France, April 26, 2017. 
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5. Improving GEOINT Analysis: Additional Detail 

In Volume 1, we recommended short-term (using today’s technology) and longer-term (using 
future technologies as they mature) applications for AI/ML in the areas of GEOINT, SIGINT, 
OSINT, multi-INT, networking and hardware, and mission management.158 This chapter presents 
additional details on the GEOINT recommendations and how they would fit into the generic data 
flow map first presented in Chapter 2. As in Volume 1, we divide the discussion into 
improvements using today’s technology and those using future technologies as they mature. 

Making the Most of Today’s Technology to Improve GEOINT Analysis 
Table 5.1 reproduces the short-term GEOINT recommendations that were outlined in 

Volume 1, the analysis roles that would be affected, and the objectives they would help address. 

Table 5.1. GEOINT Recommendations: Making the Most of Today’s Technology 

Summary of Recommendation 

Analysis 
Roles 

Affected 
Objectives 
Addressed 

Create a geospatial intelligence analysis and reporting tool (GEOART) to 
semiautomate product generation and mission reporting. Reporter 

Efficiency 
Human 
capital 

Create an improved formatter to assist with threat warning. Reporter Efficiency 

Create a linker tool to tie information used to confirm the exploitation back to the 
source. 

Exploiter 
Investigator Effectiveness 

Adopt geographic information system (GIS) into the MTI workflow. Exploiter 
Investigator 

Effectiveness 
Agility 

Bring in programmers to write Python scripts to automate analysis processes within 
GIS. 

Exploiter 
Reporter Efficiency 

Assess risks and benefits of adopting the industry standard in video-editing tools for 
WAMI. 

Exploiter 
Investigator 

Effectiveness 
Agility 

 
The primary goal of adding these tools is to significantly speed up GEOINT analysis 

processes by preventing duplication of effort and standardizing the workflow. Today’s processes 
include significant cutting and pasting, manual entry of metadata from one system to another, 
and manual preparation of many products. For high-altitude imagery, most of the analyst’s time 
is spent formatting, not analyzing. So, for example, because object-recognition tasks take little 
time, automating them with AI/ML will not add efficiency to AF DCGS operations unless 

 
158 Menthe et al., 2021. 
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reporting tasks are also automated; automation might instead exacerbate existing bottlenecks in 
the reporter role. Such automation could, however, allow for archival imagery to be tagged with 
metadata, a task for which there are few resources available today. In addition to speeding up 
existing processes, many of the technologies listed in the next sections would prepare the way for 
the more-advanced future of AI/ML technologies that we will discuss later in this report.  

GEOINT Analysis and Reporting Tool 

A primary recommendation that can be implemented today is to create a GEOART to 
generate reports for all high-altitude imagery, FMV, and MTI missions. Details of how a 
GEOART would plug into the existing architecture are discussed in the restricted volume.159 
Figure 5.1 shows how GEOART (bottom center) and the other nterm recommendations 
discussed later would transform the generic data flow map introduced in Chapter 2. 

Figure 5.1. Generic Data Flow Map—Potential Improvements with Today’s Technology 

 

As it is presently done, the exploiters would select images or screenshots and save them to a 
folder. The GEOART would then automatically format PowerPoint slides with appropriate 

 
159 Menthe et al., forthcoming. 
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templates for whatever products are required for the mission, such as a vehicle follow report. At 
this stage of development, products would likely still require some additional hand annotation 
(depending on the INT), but most of the required data and formatting could be added 
automatically, which would save considerable time for human analysts. This change in the 
workflow would prepare for future developments as well. As AI/ML methods permit more-
automated tagging of information, this information would be made available to the GEOART, 
which would require less human intervention to complete reports. Eventually, we envision that 
this would become a “human-on-the-loop” process that could accept human intervention but 
would not require it. In addition to formatting the product, the GEOART would also format a 
mission report (e.g., target log) using these images, the goal being to ensure that the analyst does 
not need to enter information twice. 

Formatter for Threat Warning 

The next recommendation, shown on the right side of Figure 5.1, is to create an improved 
formatter to assist with threat warning. Instead of hand-jamming information into a web-enabled 
interface, the analyst would need only to push a button. Relevant metadata concerning the 
warning—source, method, parameters—would be properly formatted and pushed out over the 
warning systems. This would be particularly helpful for real-time intelligence, where warnings 
must be repeatedly updated by hand today. Some analysts we spoke to expressed concern that, 
without such an improvement, it would be difficult to scale up certain warning processes to 
handle what might be required in a large-scale conflict.  

We expect that the main difficulty in creating such a formatter would be in crossing 
classification barriers and dealing with outdated hardware systems. Indeed, were there no such 
barriers, airmen likely would have created such a formatter already.160 Open-architecture DCGS 
might alleviate some of these barriers, but it certainly will not eliminate all of them. Again, one 
purpose of making this change is to prepare the way for a semiautomated threat-detection 
process that would send warning messages automatically. Creating an improved formatter today 
would not be a wasted effort but would help address “hidden” implementation barriers that could 
block future AI/ML upgrades if not solved. 

Linker 

The next recommendation is to create a linker, shown as a dotted arrow on the center-left 
side of Figure 5.1, that would prepare future back-tracing of exploitation to collections. 
Presently, a lot of reference material is reviewed to confirm exploitation, but records of what 

 
160 We heard of a few efforts to automate different kinds of warning messages, in fact. Many of these eventually 
died when the enthusiastic airman who invented them left the AF DCGS, but others may remain viable. The 
weapons and tactics (WEPTAC) conference we discuss in Chapter 7 would be a good forum for soliciting 
information on this. The technical problems may already be largely solved. 
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information was reviewed are rarely kept because doing so would add extra steps to the analysis 
process and is not currently required. If this process can be simplified, however, such as by 
storing a uniform resource locator (URL) or other reference with a single push of a button, then 
these references could be integrated into the final report—and would pave the way for more-
automated linking in future development cycles.  

Automatically identifying all relevant contextual data from various systems would need to 
wait for AI/ML tools. Identifying geolocated data from the area of interest would be simpler but 
would still be complex. In the future, when these processes are semi- or fully automated, the data 
pulled by an AI/ML tool from reference databases would follow the same paths and provide new 
traceability to show how collections link together. Thus, solving the short-term problem of 
linking information between separate systems would not be wasted effort; indeed, it is necessary 
to set the conditions for successful integration of AI/ML-enabled workflows. 

Geographic Information System for MTI 

Initially, the GEOART just described would be more directly applicable to high-altitude 
imagery and FMV. Ultimately, we would like GEOART to extend to MTI as well, mostly so that 
those missions and their products can be reflected in the Unified Collections Operations 
Reporting Network (UNICORN) architecture like the rest of GEOINT. However, because MTI 
products are not as standardized (they depend more on theater needs), this aim can wait for a 
later revision of UNICORN. Initially, for MTI, our primary recommendation is to proceed with 
integrating the GIS into the process. GIS is a program that is designed to store, analyze, and 
display georeferenced data, typically by combining information in layers that can be manipulated 
separately. We believe that such a tool could replace all the manipulations currently done with 
various custom tools and Excel (different tools are used at different DGS sites). 

The phenomenology of MTI, which involves visualizing a forest of geolocated point returns 
and movement vectors (“dot-ology”), is uniquely suited to GIS work. Furthermore, modern GIS 
software natively accepts Python scripting to automate repetitive processes. Writing these scripts 
should not be difficult. One airman we spoke to was learning to code on his own time so he 
could write these scripts for GIS systems in the future. When asked whether he thought a 
professional programmer could write these scripts within 30 days, he laughed and said, “Yes, but 
what would he do with the other 25 days?” 

Integrating a complex system, such as the GIS, into any part of the AF DCGS ops floor 
would require additional training, however. Some consideration would need to be given to when 
and where this training would occur. As discussed in Chapter 7, special certification programs 
for interested airmen would enable them to be qualified not just to use the system but also to 
teach it to others. 
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It is true that such a system as GIS is arguably more powerful than the AF DCGS needs 
today. But the GIS environment is the standard for the IC, notably the NGA.161 The 11th Special 
Operations Intelligence Squadron and other organizations are already moving in this direction. 
MTI can be the spearhead that helps introduce GIS more fully into AF DCGS operations, 
particularly at the DART, where the kind of geolocation and data fusion it does is also well-
suited to GIS techniques. This will become increasingly important as the amount of data grows. 
Moreover, because GIS is the standard, any future commercial off-the-shelf AI/ML tools for 
working with “dot-ology” will likely be designed for GIS. 

Video-Editing Tools 

Unlike FMV, which is currently run either on the Multi-INT Archive and Analysis System 
(MAAS)162 or Advanced Intelligence Multimedia Exploitation Suite (AIMES),163 the WAMI 
architecture is newer and less-frequently used. But although the Air Force continues to invest in 
custom video analysis suites, a clear standard has emerged over the past few years for video 
editing in the commercial television and entertainment industries.164 This standard is Avid,165 a 
household name in film and television.166 Avid Technology has various multimedia editing and 
manipulating products, and its storage system is Avid NEXIS.167 Like GIS, Avid is arguably a 
more powerful tool than the AF DCGS really needs for current operations, and we cannot 
recommend that the Air Force switch to Avid at this point because we have not assessed the 
alternatives. We recommend that the Air Force perform the appropriate risk-benefit analysis for 
the use of this product. Some commercial products have been adapted well to accommodate the 
Air Force, such as Google Maps. More-recent experience in developing Project Maven with 
Google, however—in which Google canceled the contract over employee backlash—may give 
pause when contemplating contracting outside the more traditional defense sector.168  

 
161 For example, see the discussion in Environmental Systems Research Institute, “At the NGA, GIS Underpins 
Virtually Everything,” ArcNews, Spring 2017. 
162 General Dynamics, “Multi-INT Analysis & Archive System (MAAS),” webpage, undated. 
163 leidos via PRNewswire, “SAIC Launches Advanced Intelligence Multimedia Exploitation Suite (AIMES),” 
press release, McLean, Va., November 1, 2010. 
164 This was not true five years ago. See Alkire et al., 2016. 
165 For example, every movie nominated for an Academy Award for Best Picture or Best Editing in 2018 was edited 
using Avid products (Igor Torgeson, “Editing Like an Oscar Winner: Why Learn Avid Media Composer?” blog 
post, New York Film Academy, March 5, 2018). 
166 Nick Messitte, “How Avid Hopes to Fix a Broken Music Industry,” Forbes, April 30, 2015. 
167 This new name removes the previous unfortunate choice from 2005, which was ISIS [the Islamic State of Iraq 
and Syria]. 
168 See, for example, Daisuke Wakabayashi and Scott Shane, “Google Will Not Renew Pentagon Contract That 
Upset Employees,” New York Times, June 1, 2018. 
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Mission-Management Systems 

AF DCGS can also make short-term improvements to the mission-management aspects of 
GEOINT analysis. The bent line labeled “mission metadata” on the lower left of Figure 5.1 
represents a way of pulling information about the mission itself automatically from the mission 
management or scheduler tool so that it need not be manually entered by analysts. The “Mission 
Management” tool that would feed (and ultimately be fed by) GEOART today would be the 
UNICORN. GEOART would replace the high-altitude toolkit and FMV toolkit used today.  

UNICORN is an excellent example of Air Force innovation: It was developed by airmen in 
response to a clear need for a tool to manage missions and disseminate GEOINT reporting.169 
However, as needs have arisen, UNICORN has been pressed into service to perform new 
functions for which it was not originally designed. Its portfolio now includes four functions: 
managing missions, supporting ISR assessment, facilitating reporting, and facilitating 
dissemination. These have been added to UNICORN largely because, as an AF DCGS–owned 
system, such changes could be made quickly and easily. 

Through GEOART, we propose to transfer the reporting and dissemination functions to a 
separate AF DCGS–owned tool that could be updated separately as needed on a different 
development cycle to avoid overloading UNICORN and to allow for AI/ML functions to be 
introduced more seamlessly into the GEOINT workflow in years to come.170 This should also 
make it easier to create a family of custom products for each CCMD or to support unclassified 
distribution in an HA/DR or related situation.  

Taking Advantage of Future Technology to Improve GEOINT Analysis 
The above short-term recommendations would help set the conditions to integrate future 

AI/ML into the GEOINT workflow. Generally speaking, the application of AI/ML to basic 
exploitation tasks would enable human effort to shift toward more-complex analysis tasks; 
exploiters could do more work further down the spectrum of synthesis discussed in Chapter 2. 
This shift would also pay dividends for future (later-phase) analysis, such as reducing the need 
for target systems analysts to do basic exploitation so that they can provide higher-quality 
products. It could also automate the population of databases, which would increase efficiency 
and reduce error. Table 5.2 reproduces the longer-term GEOINT recommendations from Volume 
1. 

 
169 SrA Zane Wright developed the original program at the AF DCGS. See Alkire et al., 2016.  
170 UNICORN is in many ways the heart of AF DCGS GEOINT operations, and making upgrades while the AF 
DCGS is operating 24/7 is like trying to perform open-heart surgery while the patient is still awake. UNICORN has 
been upgraded successfully many times, but the coming AI/ML changes will pose serious design considerations. We 
believe that it is wiser to separate the development of these tools to ensure the AF DCGS can function more 
smoothly during the upgrade process. 
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Table 5.2. GEOINT Recommendations: Taking Advantage of Future Technology 

Category Summary of Recommendation 
Analysis Roles 

Affected Objectives Addressed 
GEOINT Use AI/ML to perform Phase 0 analysis and 

dynamically retask collectors with human-in-the-loop 
(or on-the-loop, depending on how the mission 
control element evolves). 

Exploiter Efficiency 
Effectiveness 

Use AI/ML to perform partial Phase 1 analysis (e.g., 
tag imagery, identify objects and people). 

Exploiter Efficiency 
Effectiveness 

Use AI/ML to flag analysts of significant changes in 
activity and generate threat warnings with human-on-
the-loop. 

Exploiter 
Reporter 

Efficiency 
Effectiveness 
Human capital 

Use AI/ML to analyze WAMI imagery. Exploiter Efficiency 
Effectiveness 

Use AI/ML to pore through archived FMV and WAMI 
footage to apply partial first-phase exploitation to all 
and create data sets that are sharable with the IC. 

Investigator Agility 

Seek to lift the eyes-on requirement for FMV 
missions in which the “ISR role” indicates no risk of 
troops in contact (TIC) or strike decisions and when 
AI/ML tools can alert analysts to other events that 
require real-time judgments. 

Exploiter Efficiency 
Human capital 

 
Figure 5.2 shows a notional data flow map indicating how future AI/ML tools would fit into 

the generic GEOINT workflow. Although these data flow maps must become increasingly 
notional as we move into the future, they provide a useful visualization of where AI/ML might 
be employed. In this chart, which builds on Figure 5.1, the dark red items represent the longer-
term recommendations. The following sections describe these recommendations in greater detail. 
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Figure 5.2. Generic Data Flow Map—Potential Improvements with Future Technology 

 

Increased Automation of Key Processes 

Compared with Figure 5.1, Figure 5.2 shows a more complex process involving AI/ML and 
human analysts (both on-the-loop and in-the-loop). Several new items appear here. Two analytic 
processes, “Analyze Collection” and “Determine If Threat,” are enabled by AI/ML, and the 
dynamic tasking process is therefore also semiautomated. In an important change, the human-
readable “Viewer” program has moved out of the main pathway and is used by the analysts only 
as needed. The linker has become fully automated, pulling from reference material as required. 
Here, we see some of the downstream dividends of integrating AI/ML tools: By populating and 
tagging data automatically on the back end, we can now more easily find and link to that 
information on the front end. 

Moving the “Viewer” program reflects a larger change in the workflow. Immediately after 
processing, the AI/ML system would review the information. If the collection is unusable, the 
system would automatically request a new collection. Thus, we envision significant automation 
of Phase 0 tasks (although humans would need to be involved as pilots and sensor operators until 
AI/ML processes can be added to RPAs). The AI/ML system would then apply basic annotation 
and metadata, identifying as many buildings, vehicles, and other objects as it can in the image. 
This is Phase 1 analysis (as defined in Chapter 1). This function will not be fully automated, 
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however, because AI/ML is unlikely to be able to interpret human behavior as well as a human 
analyst can in all cases. Thus, after performing its initial analysis, the AI/ML system would flag 
certain collections for review by the human analyst who oversees the process and flags possible 
threats for immediate consideration. The human would use the “Viewer” to assess the 
information and may agree to issue the threat warning. For FMV collections, the analyst would 
also interpret human behavior and make judgments that may affect the course of the mission. For 
example, if the image shows two moving targets, the analyst may be able to advise the more-
important one to follow. Finally, the files created by the AI/ML tool would be loaded into an 
enhanced GEOART that can create products or reports automatically, with the human on-the-
loop to provide quality control. This would free the human analyst to review contextual material 
and make more-sophisticated judgment calls as needed. 

Enabling AI/ML Methods and Hardware 

The next set of recommendations concerns enabling capabilities. As discussed in Chapter 4, 
AI/ML algorithms are only as good as the data sets on which they are trained. New target classes 
and new environments will demand new training. Humans will therefore need to remain in-the-
loop to ensure agility. The Air Force should probably lead this effort, given the uniqueness of Air 
Force airborne imagery in terms of viewing angle, resolution, and target set. For machine-vision 
applications, CNN (or progeny thereof) would be most applicable.  

Given that speed of identification is not critical for still imagery—most such requirements 
need not be executed in near–real-time—we do not anticipate that custom hardware will be 
required for this particular task. For FMV, however, advanced hardware of the type discussed in 
Chapter 4 may be required to enable identification by AI/ML algorithms in near–real-time. 
Although the data sets required for Air Force applications might be unique, some of the 
algorithms and processes may be common to other parts of the IC. The AF DCGS should 
therefore look to AI/ML development efforts from the wider IC that could be leveraged for this 
purpose. 

Finally, the same techniques used for FMV should be used to analyze WAMI imagery and 
pore through archival footage. The resolution differences between WAMI and FMV will require 
separate sets of training data, however. CNN techniques are the most likely to be used for this 
purpose. 

Seeking to Lift the “Eyes-On” Requirement for FMV 

Another potential benefit of mature AI/ML technology pertains to FMV specifically. For 
nearly two decades, AF DCGS analysts have labored under the requirement that at least one 
person in the PED crew must maintain eyes on the FMV feed at all times. Usually two or three 
airmen trade off this responsibility over the course of a shift. Senior Air Force leaders have 
expressed that this requirement adds little value. In 2011, former Air Force Vice Chief of Staff 
Gen James E. Cartwright called the practice: “Death TV for hours on end. It’s just a waste of 
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manpower.”171 The eyes-on requirement is not only inefficient, it also takes a significant toll on 
human capital. In our many interviews with airmen over the years, watching FMV feeds stands 
out as the most-loathed duty. Nevertheless, it is clear that airmen sometimes should watch certain 
FMV feeds in real time. There needs to be a clearer determination of when this is truly 
necessary.  

In 2012, PAF found that asking analysts to watch more than one screen at a time would 
reduce their effectiveness because significant events would be more likely to be missed.172 But if 
the ISR mission is such that it entails no risk of TIC and no possibility of strike decision—and if 
AI/ML applications can alert analysts to any other events that might require real-time attention—
then this concern abates. In 2015, PAF recommended that the Air Force engage with the other 
services to seek to relax the eyes-on requirement under such circumstances. However, at the 
time, there was no widely accepted method for the supported unit to designate a mission as 
“safe” in this regard, and AI/ML applications were not yet ready to provide backup. 

A recent effort to mark appropriate missions with an ISR role has made this proposal more 
feasible.173 Some of these ISR roles entail no risk of TIC and no possibility of strike decisions 
(such as observing patterns of life) and only infrequently require the human analyst to make real-
time judgments that could affect the course of the mission (such as by redirecting the camera). 
When AI/ML applications reach the milestone of reliability to the point where they can detect 
significant events as well as analysts can, they will be ready to take over the eyes-on role for 
those missions. At that point, we would recommend lifting the eyes-on requirement for FMV 
missions in which the ISR role designated by the requestor indicates no risk of TIC and no 
possibility of strike decisions and when AI/ML tools can reliably flag analysts to other events 
that would require real-time judgment.  

Considerable manpower remains tied up in FMV support. As a practical matter, the future 
development of the AF DCGS hinges on the ability to liberate FMV exploiters from this burden 
and free them up to perform tasks that make better use of human capital.  

Implementing GEOINT Recommendations 
As noted in Volume 1 and in Chapter 8 of this report, the way new tools and technologies are 

rolled out to users matters. For example, a recent upgrade to the GEOINT workflow—
eliminating an old program that had been used to create file folder structures—met with user 
resistance from some senior analysts because of perceived risk. One told us that hours of work 
had been lost because, when the analysis program crashed, the analyst could not (or perhaps did 

 
171 Ellen Nakashima and Craig Whitlock, “With Air Force’s Gorgon Drone ‘We Can See Everything,’” Washington 
Post, January 2, 2011. 
172 See Menthe et al., 2012. 
173 Tingstad et al., forthcoming.  
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not know how to) retrieve partial products from the new hidden folder structure. We believe that 
better user engagement to deal with crash situations could have avoided this. 

To effectively implement these GEOINT recommendations, the development team should 
visit (and likely revisit) multiple AF DCGS sites, including both active-duty and ANG, plus sites 
with special needs, such as DGS-3, to consult with the actual analysts who will have to use these 
new tools as part of their daily workflows. Reviewing training documents alone is insufficient. 
These documents do not explain how analysts react to all contingencies (and they could not), and 
much of AF DCGS crew teamwork consists of informal practices learned on the job. As 
discussed in Chapter 8, when the development cycle comes closer to the launch, the 
implementation team should identify potential opinion leaders and champions at each site to 
pave the way for adoption. The ultimate goal is for AI/ML technologies to help analysts do their 
jobs better, not to create new obstacles and irritants. 
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6. Rebalancing AF DCGS Competencies and Organization: 
Additional Detail 

Chapter 2 defines the three AF DCGS competencies as (1) supporting missions, (2) 
supporting analysis, and (3) solving intelligence problems. AI/ML has the potential to transform 
each competency either directly by performing or helping to perform specific tasks associated 
with conducting analysis174 or indirectly by freeing human analysts to focus more on solving 
intelligence problems and/or developing innovative ways to support and improve analysis. As 
the AF DCGS incorporates the AI/ML technologies recommended in Volume 1, it has an 
opportunity to rebalance its weight of effort among these three competencies. This chapter 
discusses potential future paths for the AF DCGS and their implications for organization and 
data flow. The discussion provides background for the “organization” recommendations 
summarized in Volume 1.175 

A Choice of Paths 
Figure 6.1 reproduces the scheme of competencies shown in Chapter 2. The green labels 

indicate how shifting the weight of effort toward specific competencies would help address the 
challenges of efficiency, effectiveness, human capital, and agility discussed in Volume 1.  

 
174 It is important to remember that some amount of human effort will remain necessary to conduct analysis. As we 
discuss in Chapter 5, even after leveraging AI/ML methods for key tasks, there will be many tasks where data flow 
not only benefits from but requires human intervention. 
175 Menthe et al., 2021. 
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Figure 6.1. Rebalancing Weight of Effort Across AF DCGS Competencies 

 

Solving Intelligence Problems 

One possible direction would be to shift the weight of human effort toward solving 
intelligence problems. This implies a problem-focused organization, where the aim is to push 
human effort down the spectrum of synthesis (discussed in Chapter 2) toward all-source 
intelligence and multi-INT fusion. In this construct, analysts would no longer need to be 
organized in crews—a structure that derives from the idea that each intelligence-collection 
platform needs a dedicated group of people to exploit information during or after every mission. 
The problems that each team focuses on would instead depend on joint, IC, service, and air 
component priorities. A team could also simply be assigned to support a given ground unit or 
tactical area of operations.176  

With analytic work separated from specific platforms via automation, there would have to be 
a separate mechanism (in addition to changing the Global Force Management process’s implicit 
assumption that AF DCGS operations be organized by platform) for apportioning analyst time to 
specific problems. It will also be important to consider the unique value that AF DCGS analysts 
offer to different needs, such as threat warning for aircraft and tactical support to ground, 
amphibious, and maritime forces. Some of the more unusual items might need separate 
“problem” teams. Shifting AF DCGS weight of effort toward this competency would help 
improve overall effectiveness at supporting warfighters and make better use of the skills that 
human (versus artificial) intelligence brings to the table. 

 
176 PAF has suggested an area-centric scheme for conducting PED for some time. See Menthe et al., 2012. 
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Supporting Analysis 

Another option would be to shift toward supporting analysis, an approach that would become 
largely technology focused as AI/ML tools are introduced. As we discuss in Chapter 8, 
developing, onboarding, maintaining, and evolving new technologies for the AF DCGS requires 
an immense amount of vigilance, analysis, and expertise—not just in programming or the how 
that supports innovation but also in the what and the why of the missions the technology is 
helping to achieve. Technology needs humans to work. For at least the next several years or 
decades, humans must define and evolve requirements, test the fidelity and usefulness of tools, 
catch mistakes, conceive of new applications for tools, provide judgment and intuition, and fulfill 
reasonable legal requirements (e.g., laws prohibiting machines from standing alone in the kill 
chain).  

Analysts within the AF DCGS (and elsewhere) are already doing parts of this work, typically 
on an informal or ad hoc basis. For example, analysts might decide to fix a technological glitch 
on their own time. They might participate in crowd-sourcing activities to support a ML project. 
One way to formalize this effort would be to align sites or teams using the data format (e.g., still 
imagery, text, voice, signal) that automated tools are attempting to exploit or analyze. There 
might be additional groups that are dedicated to integrating multiple intelligence sources and 
ensuring the flow of information among databases and between databases and users. The 
objective would be to improve the efficiency of AF DCGS analysis, whether human or 
machine.177 

Balancing for Agility 

The best way forward would be for the AF DCGS to balance the approaches just mentioned. 
Including all three competencies in future AF DCGS plans will keep the organization agile and 
responsive to evolving national security needs. Of course, retaining the three competencies in 
one organization will require the identification and delineation of teams across the enterprise to 
work on each. Individual sites need not include all three but could do so. For example, some 
locations might need to provide greater support to a theater’s problem-centric needs, whereas 
others might place greater emphasis on being a testbed for technological innovation. 

The ratio of emphasis among the competencies can—and should—vary over time. In the 
coming years, as technology comes on board, DGS locations will likely still maintain large 
numbers of teams on the ops floor that are focused on supporting missions, with smaller teams 

 
177 We note that increasing technological specialization may also drive toward more-complex skill sets. As a 
practical matter, this may lead to further subdividing of skills as the INTs become increasingly specialized, much as 
technical electronic intelligence has become a subset of SIGINT. For example: “As next-generation FMV and still 
imagery sensor technology are fielded, the two jobs will become more distinct and require dedicated skill sets” 
(Jennifer A. Hollock, Flexibility Versus Expertise: A Closer Look at the Employment of United States Air Force 
Imagery Analysts, master’s thesis, Maxwell Air Force Base, Ala.: Air Command And Staff College, Air University, 
October 2017, p. 2). 
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focused on the other two competencies. Over time, as more steps in the process become 
automated, the number of teams focused on supporting missions might decrease in favor of 
supporting analysis improvements and solving intelligence problems. The role of supporting 
analysis will shift toward the ops floor as analysts are freed from the burden of performing more-
basic tasks and can consider how to improve those processes. The DART will increasingly focus 
on intelligence questions and will likely grow. 

It is important that the AF DCGS strive to balance all three competencies, even when there is 
a temporary shortage of demand for one or more of them. Otherwise, the AF DCGS could 
devolve into supporting only one of the competencies, even though all are needed in the long 
term. There are, unfortunately, plenty of examples throughout history where analytic capabilities 
were suspended, only to become important some years later, when personnel with relevant skills 
were no longer available.178 Thus, the AF DCGS would do well to cover its bases and ensure that 
some level of analytic capability exists within all three competencies, ready to surge if and when 
needed.  

Organizing Around Phases for Scalability 
Another way to think about the rebalancing of AF DCGS competencies is to envision 

different parts of the AF DCGS as organized around different phases of analysis. In time, AI/ML 
tools will become increasingly adept at performing Phase 0 analysis (determining usefulness of 
collections, dynamically retasking to retake a failed collection, issuing threat warnings) and parts 
of Phase 1 analysis (answering basic “who,” “what,” “when,” and “where” questions) for 
intelligence as it comes in. When they can do so reliably—achieving success and false alarm 
rates at least comparable to human analysts—then analysts will be able to focus almost 
exclusively on the other parts of Phase 1 analysis (answering more-advanced “why” and “how” 
questions) and on conducting Phase 1.5 analysis and beyond (correlating multisource, multi-INT 
information to solve intelligence problems as needed).  

By organizing machine and human resources around different phases, the AF DCGS can 
make better use of human capital, improve efficiency and effectiveness for both human and 
machine tasks, and allow more-agile scaling of resources as needs evolve. AF DCGS can 
standardize the use of AI/ML for Phase 0 and parts of Phase 1 analysis for all collections as soon 
as they are ingested to create a tagged, searchable database. Human analysts can thus be freed 
from specific input sources (performing more-advanced parts of Phase 1 analysis only when 
needed to answer specific questions) and can focus instead on the desired output—the 

 
178 Some argue, for example, that the Air Force’s expertise in conducting irregular warfare during the Vietnam era 
was largely lost and had to be reconstituted in the 21st century (see Will Sellber, “The Other Side of the COIN,” Air 
and Space Power Journal, Vol. 32, No. 3, Fall 2018). 
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customer’s needs. We may think of this as a shift in human effort from input-centric, “as-
collected” analysis to output-centric, “on-demand” analysis.179 

This shift suggests a corresponding change in AF DCGS organization. As illustrated in the 
generic data flow map in Figure 6.2, we may envision a future state in which each of the 
competencies just discussed is addressed by a different team. This is designed to grow 
organically, we hope, out of the current ops-floor/DART split. 

Figure 6.2. Generic Data Flow Map—Potential Organization to Balance Competencies

 

NOTE: I&W = indication and warning. * = fully automatic or human-on-the-loop. 

In this schematic, the basic questions (who, what, when, and where) would be answered by 
AI/ML for all collections as they arrive.180 The advanced questions (how and why) would be 

 
179 Although PAF has discussed this shift in earlier reports (e.g., Alkire et al., 2016), we are not alone. As a previous 
480th ISRW commander observed: “Ideally, analytical elements such as AF DCGS should not ‘chase’ airborne ISR 
collection but instead should analyze and exploit any and all sources available that will successfully answer the 
questions posed by the supported commander” (Haugh and Leonard, 2017, p. 11). 
180 As noted in Chapter 5, there may be something of a “PED effect” like the “AI effect,” where, once computers are 
able to perform these tasks, they are no longer thought of as PED.  
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answered by humans, but only as needed. Human analysts would answer intelligence questions, 
fulfill requests for information, support a ground unit, or warn of threats in a human-on-the-loop 
fashion. When they need to perform additional analysis, human analysts would sift through 
AI/ML-tagged data in the cloud rather than manipulate data as they come in from the sensors. 
Mission management would oversee both halves of the construct, tracking progress and 
developing tools and training as appropriate to each.  

Instead of scaling the number of crews with the number of collectors, this construct would 
scale human effort with the number of supported units or requestors of information. This is a 
change from an input-scaled to an output-scaled structure. It is also a shift of human effort from 
analyzing everything “as collected” to providing additional analysis “on-demand.” This is a more 
sustainable and scalable approach than attempting to conduct full analysis for all collected data, 
and it also makes better use of human capital by moving human effort down the spectrum of 
synthesis toward multi-INT and all-source analysis, as the new SIAS paradigm anticipates. 
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7. Building the Right Skills: Additional Detail 

Although much attention is devoted to how technological innovation can improve AF DCGS 
functions, teams of well-trained human analysts remain the true heart of the enterprise. As Lt Col 
Jason M. Brown wrote in 2009: “the quality of the DCGS is defined less by machines and more 
by the complex and largely intangible web of human behaviors and abilities—the human factor 
within the system.”181 This has been echoed in PAF’s previous work in this area: “When it 
comes to PED, the Air Force’s most valuable asset is, and will remain, its force of trained human 
analysts”182 and “[w]hen it comes to tools and technologies, empowering [the Air Force’s] 
analysts should be the heart of USAF’s [the U.S. Air Force’s] analytic strategy.”183 As the AF 
DCGS moves to introduce greater automation into its processes, two specific human 
contributions stand out as important: to do what automation cannot yet do and to compensate for 
vulnerabilities created or exacerbated by automation. 

Project Maven, the current DoD effort to train AI/ML to classify objects in FMV, illustrates 
both the benefits and deficiencies of automating individual steps in the analysis process. On the 
one hand, the capability to automatically and accurately classify an object as a truck can save 
analysts time and help with cataloging archived imagery. On the other hand, object classification 
is only one part of a longer analytic process. Many subsequent steps are needed to provide key 
context, such as identifying which truck is in the image, who it belongs to, and where it has been 
observed before. As with all processes, automating one step but not others may simply shift the 
bottleneck elsewhere. 

Moreover, exploitation is not as basic as it seems. Analysts are increasingly asked to interpret 
the behavior of adversaries and civilian populations. Distinguishing between friend and foe and 
understanding social relationships can be complex determinations requiring human judgment, 
cultural knowledge, and other skills. These analytic processes are, of course, more varied and 
difficult to automate. 

There is also increasing recognition that humans may need to be trained so that they can step 
in if automation fails. The U.S. Navy provides one case in point. The U.S. Naval Academy 
phased out its celestial navigation classes in 2006, but it brought back the venerable sextant a 
decade later because of concerns that absolute reliance on the Global Positioning System (GPS) 
created a vulnerability in the event of cyberattacks, GPS jamming, or orbital ablation of 

 
181 Jason M. Brown, “Operating the Distributed Common Ground System: A Look at the Human Factor in Net-
Centric Operations,” Air and Space Power Journal, Winter 2009, p. 52. 
182 Menthe, Cordova, et al., 2015, p. 57. 
183 Alkire et al., 2016. 
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satellites.184 As we discussed at the end of Chapter 4, the use of AI/ML algorithms for 
intelligence analysis also creates new vulnerabilities that might require human mitigation. 

A more technologically enabled AF DCGS, such as what is envisioned in this research, 
would also require analysts to have a level of technological proficiency that is appropriate to 
their missions and consistent with the tools they must use or supervise. In some cases, analysts 
may already have a basic or even advanced proficiency because of their use of technology in 
their personal lives or prior job or educational experience—and we have seen examples of 
this.185 In other cases, skills may need to be taught. 

Volume 1 outlines steps that the AF DCGS should take to build the human skills needed to 
ensure proper functioning of AI/ML and to take advantage of the opportunities of AI/ML.186 This 
chapter provides additional context for and discussion of those recommendations. Many of the 
ideas to expand existing or trial AF DCGS programs arose during conversations with the analysts 
implementing them. 

Building Programming and Data Science Skills 
Any infusion of tools that address aspects of basic exploitation and reporting and make data 

more accessible for analysts will decrease the demand for skills devoted to single-INT 
exploitation. However, these proficiencies must be maintained on some level so that tools can 
continue to be monitored and improved on by humans. We therefore recommend that the AF 
DCGS retain basic INT skills for some airmen, even where they may appear obsolete because of 
AI/ML. 

But these tools will also present an opportunity for AF DCGS airmen to regularly engage in 
more-complex analysis, which could include multiple intelligence sources, developing deep 
understanding of a target set over time, and/or working on the cutting edge of tool or data science 
technique development. This will necessitate developing or bringing on airmen with somewhat 
more analytically focused skills than what we see today.  

The rapidly changing technological environment points to the need to train young enlisted 
analysts to thrive in a changing work environment and the challenge to retaining them. The 
junior enlisted airmen in the Air Force ISR community represent a treasure trove of energy that 
has yet to be fully tapped. During our research, we encountered many who wanted to learn and 
make a difference. Air Force ISR leaders should consider exposing junior analysts to more-
advanced techniques soon after they attain initial competence in their individual intelligence 
discipline.  

 
184 David Dickinson, “Navy Resumes Celestial Navigation Course,” Sky and Telescope, April 5, 2016. 
185 Unfortunately, this also means that analysts may be increasingly skeptical or dismissive of tools that do not work 
as well as those to which they have become accustomed in their civilian lives. Including analysts early in the 
innovation process is crucial, as discussed in Chapter 8. 
186 Menthe et al., 2021. 
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All analysts will need consistent proficiency in technologies to allow them to team up with 
machines as appropriate. Regardless of how the AF DCGS evolves, it will be necessary for all 
analysts to be comfortable using tools and have some analysts with basic knowledge (e.g., two or 
three college courses) in programming and/or data science to help monitor how well their tools 
are working, identify opportunities for growth, and communicate problems and new 
requirements. 

Providing analysts with opportunities to better understand the promise of all-source analysis 
(including which databases support it) will be important as they form problem-centric teams, 
regardless of the AF DCGS competencies in which they primarily work. Whether these airmen 
are supporting missions or attempting to solve more-complex intelligence problems, a basic 
understanding of data-science techniques will be increasingly useful.  

One specific capability that will be needed is the ability to work with a GIS, such as ArcGIS, 
as discussed in Chapter 5. For analysts working to support analysis, a basic understanding of 
programming will also be needed to appreciate the opportunities and limits of algorithms and to 
communicate these needs to professional programmers.187 Some of this training in data-science 
techniques (such as GIS basics) should probably be delivered at Goodfellow AFB along with 
basic training. Additional emphasis on embedded or on-the-job training is also worth 
considering. Many analyst airmen reported to us that, beyond the most basic training required to 
log on to their computer systems, there is simply no substitute for on-the-job experience.  

If automation could smooth the workflow and handle repetitive, time-consuming tasks, then 
senior analyst airmen would be able to take advantage of training opportunities more 
consistently. It may also be valuable to take advantage of the copious university and college 
certificate programs in AI, programming, data science, GIS, and other such techniques. Analysts 
often must wait months to start “real” mission work after basic training, usually because of the 
glacial pace of adjudicating applications for certain security clearances. This could be the perfect 
time to take a certificate course. Another option might be to use the opportunity between 
assignments as educational opportunities.  

Certificates provide background and basic competency without overemphasis. We do not 
foresee that the Air Force needs a large cadre of programmers and data scientists, at least not one 
that is likely to grow substantially beyond what is available now. This is because the Air Force 
will likely never be able to peel away the resources to support the kind of cadre that commercial 
industries can. Thus, it makes sense, in many cases, for Air Force analysts to be knowledgeable 
enough to converse, but not directly compete, with civilian programming experts.  

One training option, in addition to changes in basic training and embedded training, could be 
to extend the current Combat Readiness Sustainment Program that was introduced in the latter 
half of 2017 for SIGINT crews and is now being used more widely to provide opportunities for 

 
187 Technical literacy is a lesser requirement than technical mastery but still requires some basic courses and hands-
on training. 
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mid-career add-on training.188 This program essentially allows analysts to take “sabbaticals” of 
different lengths (depending on their tenure within the AF DCGS) to pursue different skills. This 
allows some training to be tailored to the needs of different analysts and sites. 

Sharing and Capturing Tactics, Techniques, and Procedures 
As the Air Force ISR community continues to develop and deploy new sensors, if it is to find 

new ways to use existing sensors and apply improved analytic tools to the data it collects, two 
TTP-related issues often arise: sharing and capturing. 

The first issue is the challenge of sharing a new method or best practice that has been 
developed to leverage a new capability. One analyst or one site may have invented a new method 
or adopted a great tool, but complexity, lack of communication, and even lack of trust can hinder 
wider implementation across the AF DCGS. ISR WEPTAC conferences can be an effective 
means of sharing new TTPs if the conferences are sufficiently frequent and geared to the tactical 
level, which is not always the case.  

The second issue is the problem of capturing the necessary analytic TTP associated with new 
capabilities for the long term. Intelligence analysis is not a simple process, and, at the AF 
DCGS—as in any technical organization—many of the little details or “tricks” needed to work 
with certain systems or manipulate complex data formats are not documented but are learned by 
experience or passed down by word of mouth. When the mission is routine, this works well, but 
when the mission involves employing a niche capability, having knowledge of how to analyze 
data to support that mission could be fleeting. When the specific situation that gave rise to the 
need for a novel method ends and that method ceases to be employed on a regular basis, such 
knowledge can atrophy or be lost altogether. When similar needs arise in the future, analysts 
experience déjà vu as they attempt to reinvent the wheel.  

Reaching the full potential of a new method, system, or technology requires standardizing 
TTPs for employment across the ISR enterprise and the operational force. Furthermore, fixing 
issues requires a concerted and holistic approach with tracking and follow-up to ensure that 
initiatives are resourced to completion. New methods need to be codified in such a way that if 
they are not used because of changing requirements, they can be quickly brought back off the 
shelf if needed again later.  

Rehearsal-of-Concept Drills 
Another promising vehicle for building airmen’s skills as technologies evolve is the 

rehearsal-of-concept (RoC) drills that began in the AF DCGS in late 2017. RoC drills are DGS 
and DMS training events that are conducted every two or three months to train airmen in their 

 
188 480th Intelligence, Surveillance and Reconnaissance Wing, “480th ISRW Institutes Combat Readiness 
Sustainment Program,” Air Combat Command webpage, October 30, 2017. 
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roles, tools, processes, and team collaboration for a given vignette. They are also used as part of 
the Combat Readiness Sustainment Program. RoC drills help airmen maintain proficiency across 
current mission sets and major operations scenarios that are not practiced in day-to-day 
operations. They usually last for a day or half a day. 

The drills occur as a tabletop exercise rather than the type of operational exercise that is 
required during a standard certification process. They provide an environment for all levels (E-1 
to E-7) to learn. They are meant to develop critical thinking and create an understanding across 
the ops floor of what different analysts are doing and how they contribute to the big picture. 
They also involve regular “interruptions” or periodic evaluation sessions in which the 
participants can reflect on their progress so far in the drill. RoC events to date have increased 
awareness between the GEOINT and SIGINT staffs of one another’s capabilities and jobs. 
Because they require minimal use of computers and other aides, the only real cost is scenario 
development and execution time. 

One thing that makes RoCs unique is that they are designed as puzzle-solving exercises. A 
situation is presented that no single analyst or PED crew can solve on their own. Success 
requires discussions with other PED crews, learning their capabilities, and putting together a 
collaborative plan of action for coordinating activity across the ops floor. As might be imagined, 
designing an exercise that works in this manner is difficult, and not every instance will succeed. 
Moderating such an exercise also takes skill. We believe that enlisted airmen have these skills.189 

We hypothesize that the RoC events can help the AF DCGS examine new tools, skill sets, 
and processes that can help address existing and emerging analytic challenges. A tailored RoC 
event could examine a particular challenge in a scenario context to see what analytic roles and 
capabilities are needed, can be improved on, or may emerge. The goal would be to structure an 
RoC drill around such challenges as 

• flooded data environment 
• sparse data environment 
• rapid increase in operational tempo 
• need to rapidly share information with new partners 
• emergence of a new focus area or information source requiring updates to TTP 
• integration of a new intelligence partner whose TTP and products need to be understood. 

The event would leverage the expertise of the AF DCGS analysts and provide another forum 
for exploring innovative analysis. For example, imagine a drill involving a time-sensitive target 
mission, where the critical metric is speed of engagement. The team would be briefed to the 
mission and would take their seats around the table. The scenario would “run” for a period of 

 
189 As one airman explained, creating and running a RoC drill draws on skills that are similar to being a Game 
Master in a Dungeons and Dragons role-playing campaign. It is worth noting that, in an unrelated context, one DGS 
commander suggested that the Air Force recruit analysts for the AF DCGS at tabletop game conventions rather than 
“just monster truck rallies” because they needed puzzle-solvers. As the weight of human effort in the AF DCGS 
shifts more toward the investigator role, these insights may be of interest to the Air Force. 
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time, then freeze. During the “run,” players would perform their jobs (tactical level). They would 
respond to events on the ground, analyze ISR data, and perhaps make decisions about using new 
tools, information, or partners available to them. For example, participants might decide to select 
among different “new enabler” choices (e.g., new collection capabilities or analytic methods) 
and would then need to demonstrate an ability to integrate the choice into their typical workflow. 
At the pause, the team would evaluate the process that occurred so far. They may answer such 
questions as: 

• What was your mission objective in terms of timeliness? 
• Were you able to respond as quickly as you needed to? 
• What were the roadblocks in the process, if any? 
• What additional skill set do you think is needed that you might not currently have? 
• Are there improvements to the process that would help meet the timeliness objective 

(improvements may cover analysis tools, databases, TTP, etc.)? 
• What enabled you to achieve your objective?  

Although RoC drills currently address specific training objectives and are used to foster 
team-building, there is an opportunity to build on this mechanism to provide input for future 
needs or approaches to doing business. They could also serve as a means of helping inform 
innovation for the entire enterprise. This endeavor would have the added benefit of engaging 
users across the enterprise in an interactive way by including them in the concept-formulation 
phase of innovation. As we see in the Chapter 8, analyst engagement is critical to the success of 
new technologies within the AF DCGS. 

Using Mission Type Orders and Focused Collections as Testbeds 
As information sources and their associated databases proliferate, analysts must continue to 

keep up with their knowledge of what is available. They cannot use what they do not know 
exists. They must also learn to use fusion tools for combining this information to tease greater 
information out of what has been collected, especially in sensitive areas. Several such multi-INT 
tools are available today. Moreover, GIS tools will be increasingly important in the future. 
Finally, one of the most important contributions that human analysts can make is to go beyond 
monitoring to discovery, addressing the most bedeviling of intelligence problems: finding the 
“unknown unknowns.” 

There is no silver bullet we can recommend here, but mission type orders (MTOs) and 
focused collection operations can provide a useful testbed for seeking new ways to approach 
difficult ISR problems. We urge the Air Force to encourage CCMDs to allow the AF DCGS to 
provide support via MTOs and focused collection operations. These allow analysts to become 
more engaged in ISR operations and to help understand the “why” of their work. Many analysts 
and leaders at various AF DCGS sites emphasized the value of MTOs, not just for improving 
collection but also for nurturing human capital. 
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8. Fostering Innovation and Successful Implementation: 
Additional Detail 

Most Air Force analysts who served during the height of the Cold War grew up in an era 
when color televisions were new. These analysts might have pored over images developed from 
a U-2 wet-film optical bar camera, searching for any detail that might signify a change in the 
strategic winds. By the turn of the 21st century, an analyst airman might have owned a Nokia bar 
phone and would have entered service hearing stories about the Gulf War. These analysts would 
likely have focused on deliberate targeting and routine collections on fixed installations to 
maintain order-of-battle information on potential adversaries—and these were the airmen called 
on to be the first FMV analysts on the line for the long ISR surge.  

Now, a new generation of analyst airmen has grown up with smartphones and wireless 
internet: In their everyday lives, they carry in their pockets the means to access information 
almost anywhere about almost anything. Many expect to see drones delivering their household 
supplies and self-driving cars well within their lifetimes.190 This new generation of analyst 
airmen has learned to track fleeting targets, support TIC at a moment’s notice, analyze data from 
advanced sensors, and work in virtual teams whose members are physically distributed around 
the globe. But although they regularly integrate new technologies into their personal lives today, 
doing so in the AF DCGS environment is not so simple. 

Our observations show three reasons for this difference. First, the purpose of the work is 
clearly different. Ordering an item over the web or posting on social media is different from 
chasing a terrorist cell or issuing threat warnings for air defense because lives may depend on the 
outcome. Second, AF DCGS work is more structured (e.g., in its use of protocols) and requires 
coordination with more people than tasks in everyday life. Personal uses tend to be more self-
directed and have larger room for error. Third, commercial technology has been specifically 
designed for easy adoption, while AF DCGS technology has not. Nevertheless, the AF DCGS 
can learn from best practices in other sectors to create an environment in which new tools are 
welcomed and have a greater chance of being adopted. 

Volume 1 proposes steps that the AF DCGS can take to ensure smoother onboarding of new 
technologies and foster a culture of innovation.191 These recommendations are based on our 
analyses of case studies and literature on best practices for developing and introducing new 
technology. This chapter presents that analysis in greater detail. 

 
190 Already, millions of drones are in use. In summer 2016, nearly 75 percent of consumers surveyed expected 
drone-enabled deliveries to begin within the next five years (see Tom Standage, “Taking Flight,” The Economist: 
Technology Quarterly, June 8, 2017). 
191 Menthe et al., 2021. 
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Confronting the Innovation Adoption Problem 
An important finding from early interviews for our research is that the way in which new 

tools are developed and brought into the AF DCGS ecosystem can greatly influence how well 
they are integrated and whether they ultimately improve performance. Well-meaning developers 
have sometimes designed prototype tools that look great on paper but do not meet analysts’ 
needs.192 Tools that appear on an analyst’s desktop without much explanation or training are 
likely to be left to languish in the corner unless a patient risk-taker can identify a good use and 
evangelize the concept to others. These issues are hardly unique to the AF DCGS. As one expert 
put it: “DoD does not have an innovation problem; it has an innovation adoption problem.”193 

To be successful, an onboarding process for new tools for the AF DCGS must be holistic: It 
must consider the end-to-end process of designing, introducing, training for, and sustaining those 
tools. It must also take into account that “newer” is not necessarily better, and that even useful 
tools need to be replaced when they have become stale. In this chapter, we argue—as others 
have—that the Air Force must embrace a different mentality for onboarding software than has 
historically been used to acquire hardware. Applications, digital interfaces, algorithms, and other 
“soft” system elements can and should be built “as the aircraft is flying.” Given the need to test, 
fix, and retest many times, this requires a flexible environment in which to receive and act on 
rapid “bottom-up” feedback from discerning users. 

In this chapter, however, we do not address certain development cycle issues, such as release 
schedules, software “beta” processes, and cost-estimation techniques. The stages of onboarding 
tools described here are aimed primarily at guiding smaller development efforts that can be 
pursued within the existing DoD acquisition framework, not larger development efforts that may 
benefit from reforms to the formal DoD acquisition system itself. Planning for advanced AI/ML 
development projects will likely entail additional consideration beyond the scope of this project. 
The more general problem of applying DoD processes to information technology acquisition—
particularly to the rapid acquisition of technologies that may entail risk—remains an important 
topic of continuing research.194 

Next, we present one framework for understanding the process and institutional needs for 
effectively onboarding tools for the AF DCGS. We include case studies of innovation in the 
commercial sector and some examples of successful innovation in the IC. 

 
192 As one analyst we spoke to put it plaintively, “They give us so many tools, but no one can help us.” 
193 Eric Schmidt, “Statement of Dr. Eric Schmidt, House Armed Services Committee,” Washington, D.C.: U.S. 
House of Representatives, April 17, 2018 (emphasis in original).  
194 See, for example, Jeffrey A. Drezner and Michael Simpson, Exploring Parallel Development in the Context of 
Agile Acquisition: Analytical Support to the Air Superiority 2030 Enterprise Capability Collaboration Team, Santa 
Monica, Calif.: RAND Corporation, RR-1808-AF, 2017; and John Birkler, Untying Gulliver: Taking Risks to 
Acquire Novel Weapon Systems, Santa Monica, Calif.: RAND Corporation, OP-268-OSD, 2009. 
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Stages of Technology Implementation 
The literature surrounding program implementation strategies—particularly for technology—

spans many fields, including behavioral science, organizational psychology, change 
management, and implementation science. Case studies provide lessons learned from distinct 
programs and approaches that can be applied to Air Force implementations. Based on our review 
of the literature, conversations with SMEs, and case studies both within and beyond the defense
sector, we have summarized a preliminary framework of the technology implementation cycle to 
assist Air Force leadership in fostering innovation and onboarding new tools.  

Figure 8.1 presents an overview of the five stages of the technology implementation life 
cycle. Those familiar with DoD acquisition may wonder why this framework looks more linear 
than cyclical. The simple answer is that it is more cyclical than it appears at first glance and 
contains several embedded development loops—this is indeed primarily an agile process. But the 
deeper answer is that, as a formal weapons system that thousands of airmen must be trained to 
use, the AF DCGS requires some measure of standardization. Although regular, even continual 
improvement of processes is desirable, the AF DCGS would be ill-advised to stay in a perpetual 
“beta” development state. As one commander, frustrated by updates and rollbacks, explained 
when he was asked what new tool or technology he most desired: “I just want what I have to 
actually work.”195 It is also important to recognize that there are distinct steps that must be taken 
to shepherd an idea from conception to implementation, even though, for any given program, the 
transitions between these stages are not always sharp and do not follow the same prescribed 
timeline. This can be helpful in ensuring that people with the right skills are able to implement or 
champion appropriate steps. 

Figure 8.1. Stages of Technology Implementation 

 

NOTE: *The development cycle involves rapid iteration through multiple builds. 

 
195 This interview was part of a previous PAF project on PED. 
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Beginning with the initial development cycle, the need—the problem that the program is 
trying to solve—must first be identified (Stage 1). The program is then developed, either in-
house or with the assistance of a contractor, or selected and procured from a vendor (Stage 2). As 
indicated in the diagram, there is considerable iteration and user engagement in this process. The 
launch of the program (in full or in pilot) across the enterprise is where widespread 
implementation truly begins (Stage 3). However, as the initial excitement fades,196 significant 
effort and resources must be dedicated to sustaining the program by circumnavigating any 
challenges that appear in the months or years that follow (Stage 4). When these challenges 
become severe, leadership must decide whether to stay the course (with adjustments to correct 
the identified issues) or abort the program (Stage 5) and return to the drawing board. We note 
that all software is ultimately transient, and all tools will need to be offboarded eventually. Doing 
so efficiently, even ruthlessly, can be important to minimizing unnecessary training on obsolete 
systems. 

This overview is designed to be broadly applicable but will need further refining in order to 
be applied to individual Air Force programs. Future studies could allow the validation of the 
framework and strengthen its applicability to specific areas. We now walk through the steps in 
more detail. 

Stage 1: Identify the Need 

Identifying a need is often a major challenge. Previous PAF research on innovation within 
the Air Force concluded, “While many believe technological change is the root cause of military 
innovation, our research indicates that major Air Force innovations usually start with the 
identification and framing of a strategically important operational problem.”197 In identifying a 
need, it is imperative to ensure that the need is tied to the people using a software program 
(including the environment in which they plan to use it) and that the need is clear to the users.  

Past PAF research on force modernization has emphasized that intended users or those close 
to the users play a crucial role in defining key operational goals—including identifying needs.198 
In this stage, airmen should play the lead role in determining their own needs, although 
contractors may serve a valuable role in facilitating these conversations.  

In our interviews and observations at many DGS sites, we have encountered remarkable 
creativity and innovation on the part of airmen.199 We have met some who voluntarily flowchart 

 
196 If there is no initial excitement, that is already a warning sign. 
197 Adam R. Grissom, Caitlin Lee, and Karl P. Mueller, Innovation in the United States Air Force: Evidence from 
Six Cases, Santa Monica, Calif.: RAND Corporation, RR-1207-AF, 2016, p. vii. 
198 David Ochmanek, “Promoting Innovation and Modernization Within the Air Force,” Santa Monica, Calif.: 
RAND Corporation, RB-99-AF, 2003. 
199 There is some selection bias here, of course, because the airmen most willing to speak to the PAF team are also 
those most likely to be self-motivated. But we have also spent dozens of hours walking freely about the ops floor, 
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and redesign their own analytic processes. We have met several who have taken the initiative to 
learn Python coding on their own—some by watching YouTube videos or using other internet 
educational resources—to write process data for web interfaces or script ArcGIS processes. We 
have even met AF DCGS airmen working to improve collection capabilities. The DART and the 
AF DCGS ops floor are fertile ground for sowing new tools, technologies, and processes. 

Stage 2: Select or Develop the Program 

The design and functionality of the program itself, regardless of how well its implementation 
is carried out, has a strong effect on how well the technology is ultimately accepted by the users 
and the success of the implementation as a whole. The literature has identified several (often 
similar) constructs that are effective in predicting technology acceptance.200 Two major factors 
are perceived ease of use and perceived usefulness.201 Perceived ease of use involves how simple 
a program is to understand and use. Prioritizing the development of program characteristics, such 
as user interfaces, can increase the likelihood of user adoption in later stages. System 
characteristics, in particular, can be designed with users in mind during the development stage. 
This applies generally in the sense that programs should be intuitive to use and, when they are 
not, they can engender frustration and user resistance (discussed in more detail later). Perceived 
usefulness is how much an employee believes that the new program will help them improve their 
performance. When selecting or developing a program, perceived usefulness can be enhanced by 
ensuring that the program aligns to demonstrated needs and operational realities of the users 
and/or is an improvement over an existing program. 

In addition to the obvious benefits derived from aligning user needs and product capability, 
integrating users into the development or selection of a program ultimately increases user 
satisfaction and buy-in.202 Other factors, such as social influence, user training, and the 
implementation process, can also influence user acceptance.203 For programs with substantial AI 
components, it is helpful to incorporate an explainable model, paired with an explainable 
interface that helps the user understand why the algorithm makes the choices it does, when it 
succeeds or fails, and when it can be trusted.204 

 
interacting with various PED crews and DART personnel, and, in our experience, airmen who wish only to complete 
their checklists and go home are more the exception than the rule. 
200 Nikola Marangunić and Andrina Granić, “Technology Acceptance Model: A Literature Review from 1986 to 
2013,” Universal Access in the Information Society, Vol. 14, No. 1, February 16, 2014. 
201 Viswanath Venkatesh, Michael G. Morris, Gordon B. Davis, and Fred D. Davis, “User Acceptance of 
Information Technology: Toward a Unified View,” MIS Quarterly, Vol. 27, No. 3, September 2003. 
202 Dorothy Leonard-Barton and William A. Kraus, “Implementing New Technology,” Harvard Business Review, 
November 1985. 
203 Marangunić and Granić, 2014. 
204 Defense Advanced Research Projects Agency, Broad Agency Announcement: Explainable Artificial Intelligence 
(XAI), Arlington, Va., DARPA-BAA-16-53, August 10, 2016. 
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It may be beneficial to outsource development to contractors when there is insufficient 
manpower and/or technical expertise in-house. For the Air Force, this includes situations in 
which uniformed personnel have competing demands on their time that do not allow for the 
focused effort needed to develop the program internally. In those cases, partnering with a 
contractor who can provide that dedicated attention over time should be considered. However, 
outsourcing is not without risk, as it might result in the atrophy of in-house expertise, could make 
oversight of the contracted project more challenging, and could negatively affect airmen’s 
development of technical skills in the long term.205 Outsourcing during the development process 
can also lead to reliance on the hardware and software of that contractor, which may become 
impractical to sustain and difficult to transition to a new program when need arises. Proprietary 
software can bedevil future program development efforts. 

Program development in this stage—whether for software or hardware—can follow several 
approaches, each of which has its own steps. Two prominent schools of thought are the 
“waterfall” and “agile” methodologies.206 Although we do not compare them in detail here, the 
key difference between the two is that agile development relies on iterations that deliver 
incremental capabilities, while waterfall development delivers a product at the end of the 
development cycle. Agile methodologies are increasingly popular within the Air Force and for 
AF DCGS applications, both within and beyond software development. The transition from 
waterfall to agile can also bring about dramatic reductions in timelines for the Air Force—cutting 
five-to-nine-year release cycles to a range of weeks or months. Additionally, agile development 
can blur the line between the development and launch stages of the implementation cycle 
because there is often iteration between the two (e.g., in a pilot program). 

Stage 3: Launch the Program 

Perhaps the most important point about this stage is that it exists at all: A new program that 
just shows up without warning will not be used,207 and, without active measures from leadership, 
it will not show up at all. A program’s launch should be a planned process that appropriately 
conveys and disseminates information, trains all levels of users and supervisors, and rigorously 
evaluates progress toward clear goals.208 Successful launches often use a measured approach that 

 
205 Robert H. Anderson, Tora K. Bikson, Rosalind Lewis, Joy S. Moini, and Susan G. Straus, Effective Use of 
Information Technology: Lessons About State Governance Structures and Processes, Santa Monica, Calif.: RAND 
Corporation, MR-1704-BSA, 2013. 
206 Darrell K. Rigby, Jeff Sutherland, and Hirotaka Takeuchi, “Embracing Agile,” Harvard Business Review, May 
2016. 
207 We witnessed analysts use clever workarounds to avoid tools or workflows that did not meet their needs.  
208 Laura J. Damschroder, Rosalind E. Keith, Susan R. Kirsh, Jeffery A. Alexander, and Julie C. Lowery, “Fostering 
Implementation of Health Services Research Findings into Practice: A Consolidated Framework for Advancing 
Implementation Science,” Implementation Science, Vol. 4, No. 50, August 2009; Tracy Ann Sykes and Jonathan L. 
Johnson, “Enterprise System Implementation and Employee Job Performance: Understanding the Role of Advice 
Networks,” MIS Quarterly, Vol. 38, No. 1, 2014. 
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incorporates dry runs, pilot studies, or a gradual introduction of the full process/program.209 
Within the Air Force, this stage may take one to two years today (with individual pilot runs 
lasting approximately 30 days), although the specific details of an implementation plan will vary 
according to the program of interest and operational needs. Depending on the difficulty of the 
task, this could be shorter. 

The importance of this preparation should not be underestimated. It is not enough simply to 
verify that a program functions according to its specifications. A lack of preparation or a belief 
that the new program’s appeal is obvious and universal can both cause implementations to fail.210 
Once the program is advanced to beta testing or a pilot run, care must be taken to engage early 
users who are similar in background (professionally and personally) to the intended users.211 This 
is to help the implementation gain acceptance and check original assumptions regarding needs. 
If, as in the Blackberry pilot (Figure 8.2), initial assumptions were incorrect and the pilot 
demonstrates that the program does not meet the needs, or if the pilot reveals that the program 
has a significant flaw requiring redevelopment or abandonment, then it will be less burdensome 
to learn these facts in a pilot test than after a full launch.  

Figure 8.2. Case Study: Pilot BlackBerry Use for Law Enforcement 

 

 
209 Damschroder et al., 2009. 
210 Leonard-Barton and Kraus, 1985. 
211 Damschroder et al., 2009. 

 

Stage 1: Law enforcement teams needed rapid access and communications capabilities to detect 
potential threats and coordinate actions. 

Stage 2: Two law enforcement units decided to introduce BlackBerries among their squads.  

Stage 3: Pilots studies at both sites revealed that some of the technical features of the BlackBerry 
were incompatible with the users’ working conditions. For example, it was impractical and dangerous 
to input a password while pursuing a target. Neither site had training that was specific to law 
enforcement or that discussed organizational policies, resulting in confusion and misinformation. 

The main difference between the two sites in enthusiasm for the BlackBerries had to do with a 
vision of the potential impact of the device propagated by an influential user-champion who led 
users in Site X to see themselves as becoming “wireless investigators of the 21st century” who 
can “direct all aspects of an [operation] from the field.” This champion exhibited both 
charismatic and instrumental leadership…, secured resources, and guided a participatory 
implementation process…that revealed the benefits of the device, making its technical 
drawbacks more tolerable. Absent those factors, ergonomic difficulties and functionality 
limitations were much more salient in Site Y.a 

Managers at Site X mandated BlackBerry use and articulated a shared vision. Site Y had no 
champion and managers were ambivalent, taking a “wait and see” approach. Squads at Site Y with 
supervisors who encouraged BlackBerry use or other squad members who provided supplementary 
training were more enthusiastic about the device. The pilot study at Site X was more successful. 
a Susan G. Straus, Tora K. Bikson, Edward Balkovich, and John F. Pane, “Mobile Technology and Action Teams: Assessing 
Blackberry Use in Law Enforcement Units,” Computer Supported Cooperative Work (CSCW), Vol. 19, No. 1, 2009, pp. 45-71. 
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The success of a program’s launch is highly influenced by several key players. The identities 
of these key players and the roles they fill will change and shift throughout the implementation 
process and the lifetime of the program. Exact definitions of these roles vary within the 
literature, but four types discussed here include opinion leaders, champions, internal 
implementation leaders, and external change agents.212 Note that an individual may fit more than 
one category. Opinion leaders can be technical experts who influence an implementation through 
their subject-matter expertise213 or peers who are well-respected and liked within the 
organization.214 Champions actively support the implementation, frequently serving to sway 
nonbelievers in the new program or process. Champions may be more successful at positively 
influencing an implementation if they possess some level of authority. Internal implementation 
leaders have formal responsibility for the implementation as part of their job duties, while 
external change agents are associated with an outside organization that may be assisting in some 
way with the implementation (such as representatives from a software company, management 
consultants, or contractors).215 Importantly, external change agents hold a supporting and not a 
leading role.216 

Regardless of the roles they play, leadership must convey a strategic vision and demonstrate 
support for the new program. Buy-in of the vision by different stakeholder groups must also be 
achieved.217 Effective buy-in for new AF DCGS analytic systems should not be assumed and 
cannot simply be commanded; this is an area where simply ordering change is insufficient. User 
engagement is essential.218 

Stage 4: Sustain the Program 

For any system, investment must be sustained over time, well beyond the initial development 
or launch.219 In addition to providing continued financial and personnel support, leadership must 

 
212 Damschroder et al., 2009. 
213 Leonard-Barton, 1985. 
214 C. Tucker, “Identifying Formal and Informal Influence in Technology Adoption with Network Externalities,” 
Management Science, Vol. 54, No. 12, August 2008, pp. 2024–2038. 
215 Jon (Sean) Jasperson, Pamela E. Carter, and Robert W. Zmud, “A Comprehensive Conceptualization of Post-
Adoptive Behaviors Associated with Information Technology Enabled Work Systems,” MIS Quarterly, Vol. 29, No. 
3, September 2005; and Damschroder et al., 2009. 
216 External change agents can be effective. We heard several airmen speak appreciatively of “our” NRO 
representative. Such liaisons are surely one reason why NRO-led tools have been adopted by AF DCGS analysts. 
217 Kathrin M. Cresswell, David W. Bates, and Aziz Sheikh, David W Bates, and Aziz Sheikh, “Ten Key 
Considerations for the Successful Implementation and Adoption of Large-Scale Health Information Technology,” 
Journal of the American Medical Informatics Association, Vol. 20, June 2013. 
218 The 480th ISRW was exemplary in this regard during the period of this study. We have seen more than ever 
before airmen we met across the enterprise who expressed that their wing’s leadership was genuinely supportive of 
new ideas. 
219 Jasperson, Carter, and Zmud, 2005. 
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continue to reaffirm their support for the project by clearly informing (and reminding) users of 
the purpose and potential benefits of implementing a new program, as illustrated in the Health 
First case study (Figure 8.3).220 As the program implementation progresses, it must be evaluated 
periodically to determine whether the foreseen benefits have materialized as expected. The 
success of the program and the success of the program’s implementation—although related—are 
not synonymous and should both be evaluated.221 Evaluation can be conducted through the 
tracking and analysis of relevant metrics, traditional feedback, and anecdotal or informal 
feedback. 

Figure 8.3. Case Study: Health First 

 

Example metrics for evaluation include initial acquisition speed, which is measured through 
the time it takes from initial contact with a commercial sector company until that company has a 
contract to partner with DoD.222 Metrics can be evaluated both prior to rollout and throughout the 
software life cycle.223 The metrics should also try to capture user acceptance, which can be used 

 
220 Leonard-Barton and Kraus, 1985. 
221 Damschroder et al., 2009. 
222 Defense Innovation Unit Experimental, Annual Report 2017, Silicon Valley, Calif.; Boston, Mass.; Austin, Tex.; 
and Washington, D.C., 2017. 
223 Tajha Chappellet-Lanier, “Defense Innovation Board Proposes New Metrics for Assessing DOD Software 
Development,” Fedscoop, July 12, 2018. 

 

Stage 1: Health First, a hospital system in Florida, was suffering from inefficient practices in patient 
flow that led to miscommunication between hospitals and lost revenue.a 

Stage 2: They selected and implemented a hospital operations software that allowed them to track 
bed occupancy across hospitals in their system. 

Stage 3: Health First hired a technical expert in Lean and Six Sigma to lead the implementation. 
External change agents from TeleTracking Technologies, Inc. and Central Patient Logistics provided 
support. Management articulated clear strategic goals to all staff and vocally supported the 
implementation over several months. Leadership emphasized continual process improvement, 
listened to feedback from staff, and created an environment to track and reward improved 
performance. 

Software generated actionable, real-time data to spot issues & hold users accountable. Initial training 
was provided to teach staff how to use the new software. If employees were not using the program 
correctly or did not meet productivity goals, additional training was provided. 

Stage 4: Health First noticed user resistance in the form of apathy toward new TeleTracking system. 
To address the resistance, managers persuaded the staff to embrace the new system by presenting 
data that described how the problem had previously affected the hospital and the benefits of the new 
changes.  

The implementation and the program were both successful: Health First decreased patient wait times 
and improved care quality. 
a Blanchard, Janice C. and Robert S. Rudin, Improving Hospital Efficiency Through Data-Driven Management: A Case Study of 
Health First, Florida, RR-1342-TELET, Santa Monica, Calif.: RAND Corporation, 2015. 
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to evaluate both program and implementation success and can be measured through feedback or 
usage metrics.224  

Additionally, evaluations can inform users of how the program is affecting their output. If 
users can see the benefits for themselves, it can aid in building consensus and increasing 
commitment to the program.225 Conversely, evaluation may indicate that some users are 
struggling to adapt or are not adopting the program as intended. In this situation, supplementary 
or targeted training may be beneficial. Supervisors should also be trained in the new program 
their subordinates will be using.226 This not only allows the supervisors to better assist their 
employees but also helps prevent user resistance if the supervisors feel that their status is 
threatened by a perceived loss of control.227 

Importantly, leadership should not expect a new program to pay immediate dividends; it 
takes time to learn a new system or process, and productivity often temporarily declines after 
introduction of a new technology.228 This expectation should be factored into any evaluation of 
the implementation and program performance. Analysis is a complex process with different 
interconnections; improvements in one area may not yield expected benefit without improvement 
in another, and some improvements are needed to lay the groundwork for AI/ML to come.  

Stage 5: Abort When Necessary 

No matter how smoothly the previous steps proceed, problems will almost certainly arise 
during the implementation period and throughout the lifetime of the program. Leadership will 
need to decide whether the program can be fixed or if it should come to an end. In addition to 
simple feedback, these issues are often brought to the attention of management through user 
resistance.229 Such resistance is not inherently positive or negative. Depending on how it 
manifests, resistance can allow users to convey concerns about the program or its effects, but it 
can also be destructive when it disrupts or prevents the adoption of a useful program. Resistance 
can take many forms, ranging from apathy to sabotage, and might occur because of perceived 
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227 Liette Lapointe and Suzanne Rivard, “A Multilevel Model of Resistance to Information Technology 
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228 Leonard-Barton and Kraus, 1985. 
229 Rivard, Suzanne and Liette Lapointe, “Information Technology Implementers’ Responses to User Resistance: 
Nature and Effects,” MIS Quarterly, Vol. 36, No. 3, 2012. 
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threats of the program,230 mental inertia,231 past experiences,232 or personal characteristics.233 
Many of the actions just discussed, such as identifying needs, defining goals, planning the 
implementation process, and providing training, can help  prevent or reduce the impact of user 
resistance.  

However, once resistance occurs, appropriate action by the implementers becomes crucial. 
Effective intervention can address problems to the satisfaction of users, leading to improvements 
in program productivity, while inappropriate responses can escalate destructive behavior and 
even result in program failure. Although user resistance can be problematic, it is important to 
remember that, at this stage, it is often a symptom of an underlying problem. Leaders must avoid 
the temptation to treat only the symptom and not the disease. 

Common implementer responses to resistance include inaction, acknowledgment, 
rectification, and dissuasion.234 Inaction is defined as unawareness of the resistance or choosing 
not to act to acknowledge or address it. Acknowledgment, on the other hand, involves discussion 
of the resistance (such as by a task force or focus group) but is not followed by action to rectify 
the underlying causes that are discovered. In an analysis of more than 80 case studies, both 
approaches were ineffective and often led to increases in resistance. Rectification—where the 
response is intended to fix the issue or issues that are provoking resistance—can include 
redesigning the system, additional training, eliminating access to the old system, or developing a 
new system entirely. Rectification was effective in the case studies we analyzed only when the 
corrective action was aligned with the problem at hand. For example, rectification was effective 
when the resistance was caused by a confusing interface and the software was redesigned to be 
more user-friendly. For that same type of situation, when the response was to simply explain 
how to use the flawed system, the user resistance increased. This highlights the need for 
implementers to closely monitor feedback and understand the cause of resistance when it occurs. 
Dissuasion includes authoritative persuasion (reprimands and mandated use of the system), 
supportive persuasion (including reassurance, explanations, and benefit rationalization), and 
coercion (threatening users if the resistance is not stopped)—all of which were effective at 
decreasing resistance so long as the implementer was credible. When the implementers’ response 
was not deemed credible because the implementers were untrustworthy, confusing, or simply 
reassured without taking action, user resistance increased. 
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The ideal response to user resistance varies according to the context of the situation, but 
credible dissuasion and rectification aligned to the problem at hand are both generally helpful in 
decreasing resistance. Note that some manifestations of rectification, such as developing a new 
system, may involve aborting the existing system, investing resources elsewhere, and cycling 
back to an early stage of the process. This kind of “positive failure” is often necessary and leads 
to better systems that are more aligned with the organizational need and context, particularly 
when the need has shifted. 

Finally, we note that the life cycle of software is finite. Offboarding will be necessary. As 
civilian technology advances and airmen who are familiar with more-advanced systems in their 
private lives enter the AF DCGS, user resistance can be a sign that the useful life of a successful 
program is at its end or that the time is ripe for change.  

Existing Air Force and Department of Defense Efforts 
The stages of technology implementation discussed here are not intended to supplant existing 

structures, such as the formal Defense Acquisition Model.235 Such consideration goes beyond the 
scope of this project. Rather, the overview of the implementation life cycle is a framework to 
think through processes and activities that are already underway. The discussion of the individual 
stages suggests practices to improve performance and avoid pitfalls. The stages laid out are 
flexible enough to accommodate both traditional acquisition cycles and agile methods.236 

However, to truly support technology implementation beyond a single project, the culture of 
the Air Force must change—and efforts are already underway to do so. The Defense Innovation 
Board, an independent advisory council to the Secretary of Defense that was founded in 2016, is 
working to shift DoD culture by integrating new perspectives. The board’s 16 draft 
recommendations on this topic include a recommendation to embrace a culture of 
experimentation.237 This involves simultaneously testing and assessing multiple approaches; 
incentivizing leadership to promote innovation and experimentation; and encouraging employees 
to be creative, vocal, and risk-tolerant. Other voices within the Air Force and PAF share this 
perspective and recommend achieving a culture of innovation by designing an information 
technology, acquisition, and security environment that allows AI/ML to thrive.238  

Within the Air Force, multiple ongoing initiatives espouse these principles. Founded in 2017 
with the mission to facilitate innovation among airmen, AFWERX lowers the barriers to 
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partnering with the Air Force by providing coaching to startups and pairing them directly with 
airmen to share early-stage feedback.239 AFWERX serves as a bridge between stovepipes of 
activity within the Air Force itself so that best practices can be shared. This is part of a larger 
series of WERX hubs that the Air Force is opening in conjunction with the Air Force Research 
Laboratory and others.240 

The 480th ISRW has also taken steps to craft opportunities for its airmen to take assignments 
as “combat coders” or be embedded in the Silicon Valley ethos at Defense Innovation Unit 
Experimental (DIUx). The 480th ISRW has aimed to encourage incremental achievements (“roof 
shots” versus “moonshots”) and to have airmen-driven ideas generate conversation among senior 
leaders. Without this effort, 480th ISWR leadership felt that the rollout of new tools would 
amount to little more than “innovation theater.”241 

These efforts and others, such as Project Kessel Run (Figure 8.4), aim to foster a culture of 
innovation at the strategic and operational levels; they lay the groundwork for innovation. This is 
not an easy task—where other implementation obstacles discussed above can be alleviated with 
increased financial resources, cultural barriers are not surmounted as simply. Countering 
organizational inertia and driving change requires the repeated investment of time, strategic 
vision, and leadership support. Without this investment in a cultural shift to change underlying 
organizational assumptions and thinking, implementations often fail. 

Figure 8.4. Case Study: Project Kessel Run 
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The Air Force’s Kessel Run Experimentation Lab, set up in 2018 in Boston’s North End, serves as an 
innovation hub for next generation combat software for the Air Operations Center (AOC). The lab 
consists of product developers divided into application teams, operations, infrastructure and support 
teams. Staff have 6-month temporary assignments to the lab. The lab is modeled after start-up 
commercial software development companies. 

Kessel Run is a project run out of the Air Force Life Cycle Management Center to modernize the Air 
Operations Center, with DIUx’s support, whereby over 70 airmen have recently undergone training 
through a partnership with a company, Pivotal Labs, to learn software and app development in a 
genuine Agile software development environment. It is DoD’s version of a Software Factory. These 
airmen regularly ship new features every week in an iterative process seen in successful software 
companies. Kessel Run has already saved vast sums of money that would otherwise have been spent 
through the traditional acquisition process. Cycle times that may have extended years are 
accomplished in weeks.a 

a Schmidt, 2018.  



 102 

Innovation Examples from the Intelligence Community 
In addition to this general discussion, we collected several relevant examples of innovation 

within the IC. We visited sites to observe operations, interview analysts, and speak to SMEs at 
innovation centers or sites that have instituted innovation initiatives. To this end, the research 
team visited two NSA sites, five DGS sites, and the NRO and spoke to various staff at DIUx, 
Netflix, Google, and Air Force/A2. These cases provide specific examples of how some of the 
principles of innovation have been put into practice. 

National Security Agency Hawaii 

This facility supports several innovation-related initiatives that vary in scope and time. The 
Hix Incubation Cell, for example, applies a “shark tank” approach and awards short-timeline 
(under six months) projects using ideas submitted by resident staff. Part of the package reviewed 
by senior leaders includes staff skill mix and sufficiency of funding. An instructive feature of 
these proposals is that classification compliance is often “baked into” the project from the start, 
and progress reviews use “fail gates” to keep efforts on track and create off-ramps for aborting 
the effort if it does not appear that it will succeed in time. Part of the philosophy of these 
programs is that staff are to be rewarded for engaging rather than merely anticipate achieving the 
final outcome: The goal is to encourage risk-taking.  

The organization also has MAD Scientist residents to apply data-science techniques in 
support of the mission. Finally, Code Junkies, a weekly forum, allows resident staff to learn new 
coding skills and helps accelerate workflow through quick-turn projects.  

National Security Agency Georgia 

This facility leverages a lab team of data scientists, programmers, and mathematicians who 
reside locally and provide direct support to the mission. In addition, DoD and NSA teams create 
an environment for leveraging IC databases, analytic tools, and information technology support. 
This colocation provides an unusual depth of expertise for this area. 

National Reconnaissance Office 

Although it is an acquisition organization for space-based national reconnaissance, NRO is 
structured for PED resource development of the IC and DoD. Resources exist to create an open 
architecture for PED capabilities and a tool-development environment that includes a research 
stream to explore future needs related to tasking, collection, and PED. Funding mechanisms are 
in place to leverage commercial small business efforts for quick-turn improvements. The 
organization is well-resourced to innovate in this area: The necessary processes, funding, and 
mechanisms to pursue improvements are in place. 
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Defense Innovation Unit Experimental 

DoD established DIUx in 2015 to experiment with new ways to deliver innovative 
capabilities to the warfighter.242 DIUx seeks to build relationships with leading technology firms 
and can also commit some of its own funds but does not seek to own what it helps create. In FY 
2017, it had $20 million to invest.243 

One especially relevant initiative is Project Maven. This effort, which earlier involved 
Google,244 aims to leverage commercial ML advances to classify objects in imagery. The project 
involves data labeling, neural nets, compute (processing), program-of-record integration, and 
user engagement.245 The main thrust of the effort is to develop a learning data set by enlisting Air 
Force staff to tag more than a million visual images. Over the project’s course, competitions 
have been held to encourage staff to participate in the tagging process. Project Maven aims to 
use an iterative approach to development that emphasizes user engagement on an ongoing 
basis.246 

Data to Decisions 

As of July 2018, relevant Data to Decisions (D2D) efforts were narrowly scoped to explore 
the utility of the D2D approach within the AF DCGS context. The approach to experimentation 
here is to conduct quarterly software sprints to automate processes identified by AF DCGS 
analysts as candidates for automation. Contractors (data scientists and programmers) are brought 
to a DGS site to quickly learn the problem, understand the work environment, and develop the 
proposed solution. A 2018 sprint at DGS-5 consisted of a short, two-week software sprint that 
needed further improvements downstream. 

480th ISRW Innovation Labs 

Within the past year, the 480th ISRW has opened innovation labs at various DGS sites. Some 
offer advanced hardware—at least one includes virtual headsets and a 3-D printer247—but the 
focus is on supporting coding activities. Access to these centers is generally open to everyone in 
the local ISRG. They provide 24/7 access for airmen interested in programming to learn, 
practice, and collaborate. To our knowledge, none have full-time staff but borrow from the local 

 
242 Carolyn Wong, “Enhancing ACC Collaboration with DIUx,” Santa Monica, Calif.: RAND Corporation, WR-
1177-AF, 2017. 
243 Wong, 2017. 
244 Google has since pulled out this project (Wakabayashi and Shane, 2018). 
245 Pellerin, 2017. 
246 Gregory C. Allen, “Project Maven Brings AI to the Fight Against ISIS,” Bulletin of the Atomic Scientists, 
December 21, 2017. 
247 Steve Hirsch, “Innovation Lab, with Star Trek Decal Opens at South Korea Base,” Air Force Magazine, undated. 
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ISRG. The open environment is conducive to creativity and, perhaps more important, indicates a 
concrete investment by leadership to help their human capital develop. 

Successes 

Several themes arose from the different innovation models within the IC and DoD innovation 
hubs. Leadership support for risk-taking was a consistent notable characteristic. As seen in the 
literature, fostering an environment that encourages taking risks and being creative starts at the 
top. User buy-in and an effective feedback loop to “fix” the initial version are also important 
elements. By working side-by-side with analysts, developers can better understand the 
environment, the problem, and how their tool fits into the workflow. We also saw that airmen 
may find coding rewarding to address immediate workflow problems, and some are interested in 
contributing in this way. We also noted that, with classification requirements and disparate 
systems, addressing compliance early in development will lower risk to schedule slippage and 
cost growth. 

Conclusion 
With appropriate care, planning, and support, the Air Force is poised to successfully 

implement technologies and enable AF DCGS analysts to take full advantage of their tools now 
and in the future. But how they implement these technologies is as important as what they 
implement. Taking care to plan for and implement each stage of the technology implementation 
cycle will help the AF DCGS succeed in this regard. 

This overview of implementation is broad enough that it can be applied to new programs, 
processes, and tools of all scales. The discussion on a culture of innovation and continuous 
improvement is similarly adaptable, and local change at the airbase level can complement and 
enhance the impact of Air Force–wide cultural shifts. The guidance on creating a cultural shift 
complements the technology-implementation framework. Innovative managers support new 
initiatives and become implementation leaders. A culture that prizes continuous improvement 
trains airmen to generate new ideas and empowers them to see these ideas to fruition. The 
success of new programs and the retirement of outdated ones help create an Air Force that can 
adapt to new security realities.



 105 

Appendix A. Defining Technology Readiness Levels for Artificial 
Intelligence/Machine Learning 

Technology readiness levels (TRLs) are widely used in government and industry to assess 
the maturity of technologies for development and procurement. First developed at NASA in the 
1970s, TRLs were formalized into a seven-level scale in the 1980s and then expanded to the 
now-familiar nine-level scale in the early 1990s. DoD adapted this scale to inform its research 
and development and procurement processes and has continued to refine it since.248 Other 
organizations in both government and industry have also adapted TRLs for their purposes, but 
these are not always mutually compatible. For example, DoD defines TRL 5 as “component 
and/or breadboard evaluation in a relevant environment,”249 while the oil industry imposes a 
stricter requirement at the same TRL: “full-scale prototype built and integrated into intended 
operating system with full interface and functionality tests.”250 It is also not always obvious how 
to apply this language, designed for hardware, to software embodying a mathematical construct 
such as an AI/ML algorithm. 

TRLs are inherently specific to the technology being analyzed. The original NASA scale, for 
example, only addressed critical technology elements of space systems. Designing a TRL scale 
that can be applied informatively to a wide variety of technologies is challenging, and a common 
critique of the entire TRL methodology is that people attempt to apply a single TRL scale to an 
overly broad domain of technologies.251 This is clearly an issue when attempting to apply the 
DoD scale to AI/ML technologies. For instance, it is not obvious what constitutes a “component 
and/or breadboard validation” for an ML algorithm. Moreover, it is sometimes unclear that an 
AI/ML application has even reached “TRL 1,” because algorithms can be specified that solve 
extremely difficult problems in theory but may not prove useful in practice.252 The difficulty of 
predicting AI/ML development compounds these issues. 

 
248 Mihály Héder, “From NASA to EU: The Evolution of the TRL Scale in Public Sector Innovation,” The 
Innovation Journal: The Public Sector Innovation Journal, Vol. 22, No. 2, 2017. 
249 Assistant Secretary of Defense for Research and Engineering, Technology Readiness Assessment (TRA) 
Guidance, Washington, D.C.: U.S. Department of Defense, April 2011. 
250 John Strutt and Don Wells, “API 17N—Recommended Practise for Subsea Production System Reliability, 
Technical Risk, and Integrity Management,” presented at the Offshore Technology Conference, Houston, Tex., May 
5–8, 2014. 
251 Strutt and Wells, 2014. 
252 A particularly notorious example of this was Herbert Simon and Allen Newell’s General Problem Solver, which 
can theoretically solve an enormous class of well-specified problems but turned out to be almost useless in practice 
because it scales poorly to all but the smallest problem instances. See Peter Norvig, Paradigms of Artificial 
Intelligence Programming: Case Studies in Common Lisp, San Francisco, Calif.: Morgan Kaufmann, 1992, pp. 146–
147. 
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Ideally, we would use a domain-specific TRL scale for AI/ML, but, to our knowledge, no 
such scale exists, and developing one would be beyond the scope of this project. Nevertheless, 
the standard DoD TRL scale can still be useful to draw analogies with the maturity of more-
familiar technologies. In this spirit, we map the DoD TRL definitions to AI/ML as best we can 
(see Table A.1.). Note that this mapping refers to the algorithmic methods themselves and not to 
the specific applications based on them, which may be less mature. When we define technologies 
as being “mature” in this report, we are referring to those at levels 8 and 9 in this scale, (e.g., 
those that already have significant commercial deployment). 
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Table A.1. Proposed TRL Scale for AI/ML Methods 

TRL DoD Definition AI/ML Interpretation Example 
0 —  Conjectural technology AGI 

1 Basic principles observed and reported Proposed algorithm Quantum neural networka 

2 Technology concept and/or application 
formulated 

Demonstration on toy 
problem or data set (e.g., 
Modified National Institute of 
Standards and Technology  
[MNISTb]) 

Neural Turing machinec 

3 Analytical and experimental critical 
function and/or characteristic proof of 
concept 

Demonstration on medium-
scale problem or data set 
(e.g., Canadian Institute For 
Advanced Research 
[CIFAR-10d], WordNete) 

Statistical-relational 
learning 

4 Component and/or breadboard validation 
in a laboratory environment 

Demonstration on significant 
problem or data set, such as 
ImageNetf 

Reinforcement learning 
for robotics 

5 Component and/or breadboard validation 
in a relevant environment 

Demonstration on large 
problem or data set (e.g., 
VisualQAg) 

Iterated-width planners 

6 System or subsystem model or prototype 
demonstration in a relevant environment. 

Test on “real-world” data set Self-driving car 

7 System prototype demonstration in an 
operational environment 

Pilot commercial 
deployment 

Deep learning for 
automated scene 

description 

8 Actual system completed and qualified 
through test and demonstration 

Significant commercial 
deployment 

Deep learning for speech 
synthesis 

9 Actual system proven through successful 
mission operations 

Widespread commercial 
deployment 

Neural machine language 
translation 

a An algorithm that could simulate a neural net on quantum computer hardware. 
b Yann LeCun, Corinna Cortes, and Christopher J. C. Burges, “The MNIST Database,” homepage, undated. 
c Mark Collier and Joeran Beel, “Implementing Neural Turing Machines,” in Věra Kůrková, Yannis Manolopoulos, 
Barbara Hammer, Lazaros Iliadis, and Ilias Maglogiannis, eds., Artificial Neural Networks and Machine 
Learning—ICANN 2018, Proceedings of the 27th International Conference on Artificial Neutral Networks, 
Rhodes, Greece, October 4–7, 2018, Part III, Basel, Switzerland: Springer Nature Switzerland AG, 2018.b Alex 
Krizhevsky, Learning Multiple Layers of Features from Tiny Images, April 8, 2009. 
d Alex Krizhevsky, Learning Multiple Layers of Features from Tiny Images, April 8, 2009. 
e Christiane Fellbaum, ed., WordNet: An Electronic Lexical Database, Cambridge, Mass.: MIT Press, 1998. 
f Krizhevsky, Sutskever, and Hinton, 2012. 
g Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh, “Making the V in VQA Matter: 
Elevating the Role of Image Understanding in Visual Question Answering,” in Proceedings of Conference on 
Computer Vision and Pattern Recognition (CVPR), 2017. 
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